Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1387830, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211316

RESUMO

Salmonella enterica is a foodborne pathogen associated with both typhoid and non-typhoid illness in humans and animals. This problem is further exacerbated by the emergence of antibiotic-resistant strains of Salmonella enterica. Therefore, to meet public health and safety, there is a need for an alternative strategy to tackle antibiotic-resistant bacteria. Bacteriophages or (bacterial viruses), due to their specificity, self-dosing, and antibiofilm activity, serve as a better approach to fighting against drug-resistant bacteria. In the current study, a broad-host range lytic phage phiSalP219 was isolated against multidrug-resistant Salmonella enterica serotypes Paratyphi from a pond water sample. Salmonella phage phiSalP219 was able to lyse 28/30 tested strains of Salmonella enterica. Salmonella phage phiSalP219 exhibits activity in acidic environments (pH3) and high temperatures (70°C). Electron microscopy and genome analysis revealed that phage phiSalP219 is a member of class Caudoviricetes. The genome of Salmonella phage phiSalP219 is 146Kb in size with 44.5% GC content. A total of 250 Coding Sequence (CDS) and 25 tRNAs were predicted in its genome. Predicted open reading frames (ORFs) were divided into five groups based on their annotation results: (1) nucleotide metabolism, (2) DNA replication and transcription, (3) structural proteins, (4) lysis protein, and (5) other proteins. The absence of lysogeny-related genes in their genome indicates that Salmonella phage phiSalP219 is lytic in nature. Phage phiSalP219 was also found to be microbiologically safe (due to the absence of toxin or virulence-related genes) in the control of Salmonella enterica serovar Typhimurium infections in the ready-to-eat meat and also able to eradicate biofilm formed by the same bacterium on the borosilicate glass surface.

2.
Indian J Microbiol ; 64(2): 318-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39011019

RESUMO

In the current scenario of growing world population, limited cultivable land resources, plant diseases, and pandemics are some of the major factors responsible for declining global food security. Along with meeting the food demand, the maintenance of food quality is also required to ensure healthy consumption and marketing. In agricultural fields, pest infestations and bacterial diseases are common causes of crop damage, leading to massive yield losses. Conventionally, antibiotics and several pesticides have been used to manage and control these plant pathogens. However, the overuse of antibiotics and pesticides has led to the emergence of resistant strains of pathogenic bacteria. The bacteriophages are the natural predators of bacteria and are host-specific in their action. Therefore, the use of bacteriophages for the biocontrol of pathogenic bacteria is serving as a sustainable and green solution in crop protection and production. In this review, we have discussed the important plant pathogens and their impact on plant health and yield loss. Further, we have abridged the role of bacteriophages in the protection of crops from bacterial disease by discussing various greenhouse and field trials. Finally, we have discussed the impact of bacteriophages on the plant microbiome, phage resistance, and legal challenges in the registration and commercial production of bacteriophage-based biopesticides. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01204-x.

3.
Viruses ; 15(2)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36851640

RESUMO

Extensive and multiple drug resistance in P. aeruginosa combined with the formation of biofilms is responsible for its high persistence in nosocomial infections. A sequential method to devise a suitable phage cocktail with a broad host range and high lytic efficiency against a biofilm forming XDR P. aeruginosa strain is presented here. Out of a total thirteen phages isolated against P. aeruginosa, five were selected on the basis of their high lytic spectra assessed using spot assay and productivity by efficiency of plating assay. Phages, after selection, were tested individually and in combinations of two-, three-, four-, and five-phage cocktails using liquid infection model. Out of total 22 combinations tested, the cocktail comprising four phages viz. φPA170, φPA172, φPA177, and φPA180 significantly inhibited the bacterial growth in liquid infection model (p < 0.0001). The minimal inhibitory dose of each phage in a cocktail was effectively reduced to >10 times than the individual dose in the inhibition of XDR P. aeruginosa host. Field emission-scanning electron microscopy was used to visualize phage cocktail mediated eradication of 4-day-old multi-layers of XDR P. aeruginosa biofilms from urinary catheters and glass cover slips, and was confirmed by absence of any viable cells. Differential bacterial inhibition was observed with different phage combinations where multiple phages were found to enhance the cocktail's lytic range, but the addition of too many phages reduced the overall inhibition. This study elaborates an effective and sequential method for the preparation of a phage cocktail and evaluates its antimicrobial potential against biofilm forming XDR strains of P. aeruginosa.


Assuntos
Bacteriófagos , Infecção Hospitalar , Humanos , Pseudomonas aeruginosa , Biofilmes , Bioensaio
4.
Front Microbiol ; 13: 993990, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504807

RESUMO

In the present scenario, the challenge of emerging antimicrobial resistance is affecting human health globally. The increasing incidences of multidrug-resistant infections have become harder to treat, causing high morbidity, and mortality, and are posing extensive financial loss. Limited discovery of new antibiotic molecules has further complicated the situation and has forced researchers to think and explore alternatives to antibiotics. This has led to the resurgence of the bacteriophages as an effective alternative as they have a proven history in the Eastern world where lytic bacteriophages have been used since their first implementation over a century ago. To help researchers and clinicians towards strengthening bacteriophages as a more effective, safe, and economical therapeutic alternative, the present review provides an elaborate narrative about the important aspects of bacteriophages. It abridges the prerequisite essential requirements of phage therapy, the role of phage biobank, and the details of immune responses reported while using bacteriophages in the clinical trials/compassionate grounds by examining the up-to-date case reports and their effects on the human gut microbiome. This review also discusses the potential of bacteriophages as a biocontrol agent against food-borne diseases in the food industry and aquaculture, in addition to clinical therapy. It finishes with a discussion of the major challenges, as well as phage therapy and phage-mediated biocontrols future prospects.

5.
Can J Microbiol ; 68(12): 731-746, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174234

RESUMO

Emergence of multiple drug resistant (MDR) strains of Acinetobacter baumannii and a withering drug discovery pipeline necessitates the search for effective alternatives to replace or synergize with currently used antibiotics. In this report, we have described the synergy assessment of a virulent Acinetobacter baumannii phage φAB182 with a wide range of antibiotics. Myophage φAB182 was isolated from sewage against MDR A. baumannii and exhibited maximum stability at 25 °C and pH 7. It also had a short latent period of 9 min with a large burst size of 287. The phylogenetic analysis of its major capsid protein gene indicated an 84.15% similarity to the lytic A. baumannii phage Acj9. In the presence of antibiotics, phage φAB182 showed the highest synergy (p < 0.0001) with colistin, followed by polymixin B, ceftazidime and cefotaxime and this synergistic effect was further validated by time kill kinetics. The combined action of phage φAB182 with colistin, polymixin B, ceftazidime and cefotaxime was also synergistic for the eradication of biofilms formed by A. baumannii as measured by MBECcombination/MBECantibiotic values (<0.25). We thus propose bacteriophage φAB182 as a potential antibacterial candidate in combination therapy. The findings from this study strongly support the use of phage antibiotic synergy for the successful treatment of biofilm forming MDR A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Humanos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Bacteriófagos/genética , Filogenia , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Biofilmes , Cefotaxima/farmacologia , Cefotaxima/uso terapêutico , Farmacorresistência Bacteriana Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA