Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Front Immunol ; 15: 1390498, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694508

RESUMO

Recent advancements in genetic engineering have made it possible to modify Natural Killer (NK) cells to enhance their ability to fight against various cancers, including solid tumors. This comprehensive overview discusses the current status of genetically engineered chimeric antigen receptor NK-cell therapies and their potential for treating solid tumors. We explore the inherent characteristics of NK cells and their role in immune regulation and tumor surveillance. Moreover, we examine the strategies used to genetically engineer NK cells in terms of efficacy, safety profile, and potential clinical applications. Our investigation suggests CAR-NK cells can effectively target and regress non-hematological malignancies, demonstrating enhanced antitumor efficacy. This implies excellent promise for treating tumors using genetically modified NK cells. Notably, NK cells exhibit low graft versus host disease (GvHD) potential and rarely induce significant toxicities, making them an ideal platform for CAR engineering. The adoptive transfer of allogeneic NK cells into patients further emphasizes the versatility of NK cells for various applications. We also address challenges and limitations associated with the clinical translation of genetically engineered NK-cell therapies, such as off-target effects, immune escape mechanisms, and manufacturing scalability. We provide strategies to overcome these obstacles through combination therapies and delivery optimization. Overall, we believe this review contributes to advancing NK-cell-based immunotherapy as a promising approach for cancer treatment by elucidating the underlying mechanisms, evaluating preclinical and clinical evidence, and addressing remaining challenges.


Assuntos
Engenharia Genética , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias , Receptores de Antígenos Quiméricos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Animais
2.
Biomark Med ; 17(18): 767-781, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-38095986

RESUMO

A specialized biomarker(s) for lung cancer is imperative owing to its high mortality. Continuing our earlier work demonstrating the role of miR-320a as a tumor suppressor, here we discuss the most recent updates on miR-320a in lung cancer pathogenesis. We found that miR-320a modulates levels of diverse cancer-associated molecules and signaling pathways, and is also involved in modulating the immune microenvironment of lung cancer during its pathogenesis. We also discuss how miR-320a encapsulated in exosomes inhibits invasive phenotypes of lung cancer. Therefore, based on the multimodal role of miR-320a in lung cancer development and progression, we believe that miR-320a may be utilized as a potential diagnostic/prognostic marker and therapeutic target for lung cancer patients.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Microambiente Tumoral
3.
Front Med (Lausanne) ; 10: 1207993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700769

RESUMO

Psoriasis is a chronic inflammatory skin disease with keratinocyte hyperproliferation and T cells as key mediators of lesional and systemic inflammatory changes. To date, no suitable differential biomarkers are available for the disease diagnosis. More recently, microRNAs have been identified as critical regulators of lesional and systemic immune changes in psoriasis with diagnostic potential. We have performed expression profiling of T cell-specific miRNAs in 38 plasma samples from psoriasis vulgaris patients and an equal number of age- and gender-matched healthy subjects. Our findings have identified a panel of five blood-based circulatory miRNAs with a significant change in their expression levels, comprising miR-215, miR-148a, miR-125b-5p, miR-223, and miR-142-3p, which can differentiate psoriasis vulgaris patients from healthy individuals. The receiver operating characteristic (ROC) curves for all five miRNAs individually and in combination exhibited a significant disease discriminatory area under the curve with an AUC of 0.762 and a p < 0.0001 for all the miRNAs together. Statistically, all five miRNAs in combination depicted the best-fit model in relation to disease severity (PASI) compared with individual miRNAs, with the highest R2 value of 0.94 and the lowest AIC score of 131.8. Each of the miRNAs also exhibited a significant association with at least one of the other miRNAs in the panel. Importantly, the five miRNAs in the panel regulate one or more immune-inflammation pathways based on target prediction, pathway network analysis, and validated roles in the literature. The miRNA panel provides a rationalized combination of biomarkers that can be tested further on an expanded cohort of patients for their diagnostic value.

4.
Environ Res ; 233: 116476, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348632

RESUMO

Curcumin, derived from turmeric, has a strong anticancer potential known for millennia. The development of this phytochemical as a medicine has been hampered by several significant deficiencies, including its poor water solubility and low bioavailability. This review article discusses possibilities to overcome these bottlenecks by focusing on this natural polyphenol's nanoformulation. Moreover, preparation of curcumin conjugates containing folates as ligands for folic acid receptors can add a new important dimension in this field, allowing specific targeting of cancer cells, considering the significantly higher expression of these receptors in malignant tissues compared to normal cells. It is highly expected that simultaneous improvement of different aspects of curcumin in fighting against such a complex and multifaceted disease like cancer. Therefore, we can better comprehend cancer biology by developing a mechanistic understanding of curcumin, which will also inspire the scientific community to develop new pharmacological models, and exploration of emerging directions to revitalize application of natural products in cancer therapy.


Assuntos
Curcumina , Neoplasias , Humanos , Curcumina/uso terapêutico , Curcumina/farmacologia , Ácido Fólico/uso terapêutico , Neoplasias/tratamento farmacológico , Solubilidade
5.
Transl Oncol ; 27: 101573, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36335706

RESUMO

Unfortunately, despite the severe problem associated with salivary adenoid cystic carcinoma (SACC), it has not been studied in detail yet. Therefore, the time has come to understand the oncogenic cause of SACC and find the correct molecular markers for diagnosis, prognosis, and therapeutic target to tame this disease. Recently, we and others have suggested that non-coding RNAs, specifically microRNAs and long non-coding RNAs, can be ideal biomarkers for cancer(s) diagnosis and progression. Herein, we have shown that various miRNAs, like miR-155, miR­103a­3p, miR-21, and miR-130a increase the oncogenesis process, whereas some miRNAs such as miR-140-5p, miR-150, miR-375, miR-181a, miR-98, miR-125a-5p, miR-582-5p, miR-144-3p, miR-320a, miR-187 and miR-101-3p, miR-143-3p inhibit the salivary adenoid cystic carcinoma progression. Furthermore, we have found that miRNAs also target many vital genes and pathways like mitogen-activated protein kinases-snail family transcriptional repressor 2 (MAPK-Snai2), p38/JNK/ERK, forkhead box C1 protein (FOXC1), mammalian target of rapamycin (mTOR), integrin subunit beta 3 (ITGB3), epidermal growth factor receptor (EGFR)/NF-κB, programmed cell death protein 4 (PDCD4), signal transducer and activator of transcription 3 (STAT3), neuroblastoma RAS (N-RAS), phosphatidylinositol-3-kinase (PI3K)/Akt, MEK/ERK, ubiquitin-like modifier activating enzyme 2 (UBA2), tumor protein D52 (TPD52) which play a crucial role in the regulation of salivary adenoid cystic carcinoma. Therefore, we believe that knowledge from this manuscript will help us find the pathogenesis process in salivary adenoid cystic carcinoma and could also give us better biomarkers of diagnosis and prognosis of the disease.

6.
Biochem Pharmacol ; 207: 115372, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493845

RESUMO

Long non-coding RNAs have been demonstrated to promote proliferation and metastasis via regulating the miRNA/mRNA regulatory axis in various malignancies. Based on our preliminary study, we investigated the mechanism of LINC00324 through miR-493-5p/MAPK1 in esophageal squamous cell carcinoma (ESCC) pathogenesis. Herein, we confirmed that LINC00324 is significantly upregulated in ESCC primary cells and esophageal squamous cell carcinoma cell line KYSE-70. Silencing of LINC00324 modulates cell proliferation markers, p21, p27, c-Myc, and Cyclin D1 and epithelial-to-mesenchymal transition markers, slug, snail, ZEB1, vimentin, ZO-1, and E-cadherin protein expression in ESCC. Through bioinformatics and dual luciferase reporter assays, we identified miR-493-5p as the direct target molecule of LINC00324. We further revealed that LINC00324 negatively regulates miR-493-5p expression in ESCC. Moreover, our multiple gain-and loss-of-functional experiments proved that a combination of miR-493-5p and LINC00324 significantly rescued ESCC cell proliferation and metastatic phenotypes. Mechanistically, LINC00324 promotes ESCC pathogenesis by acting as a competing endogenous RNA and sponges miR-493-5p activity thereby activating MAPK1 during ESCC progression. We believe that targeting LINC00324 /miR-493-5p/MAPK1 axis may provide new therapeutic avenues for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Sistema de Sinalização das MAP Quinases , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Sistema de Sinalização das MAP Quinases/genética
7.
Transl Oncol ; 27: 101596, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36473401

RESUMO

Cancer prevalence and its rate of incidence are constantly rising since the past few decades. Owing to the toxicity of present-day antineoplastic drugs, it is imperative to explore safer and more effective molecules to combat and/or prevent this dreaded disease. Flavonoids, a class of polyphenols, have exhibited multifaceted implications against several diseases including cancer, without showing significant toxicity towards the normal cells. Shredded pieces of evidence suggest that flavonoids can enhance drug sensitivity and suppress proliferation, metastasis, and angiogenesis of cancer cells by modulating several oncogenic or oncosuppressor microRNAs (miRNAs, miRs). They play pivotal roles in regulation of various biological and pathological processes, including various cancers. In the present review, the structure, chemistry and miR targeting efficacy of quercetin, luteolin, silibinin, genistein, epigallocatechin gallate, and cyanidin against several cancer types are comprehensively discussed. miRs are considered as next-generation medicine of recent times, and their targeting by naturally occurring flavonoids in cancer cells could be deemed as a signature step. We anticipate that our compilations related to miRNA-mediated regulation of cancer cells by flavonoids might catapult the clinical investigations and affirmation in the future.

8.
Toxicol Rep ; 9: 1614-1623, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561961

RESUMO

Cancer is being considered as a serious threat to human health globally due to limited availability and efficacy of therapeutics. In addition, existing chemotherapeutic drugs possess a diverse range of toxic side effects. Therefore, more research is welcomed to investigate the chemo-preventive action of plant-based metabolites. Ampelopsin (dihydromyricetin) is one among the biologically active plant-based chemicals with promising anti-cancer actions. It modulates the expression of various cellular molecules that are involved in cancer progressions. For instance, ampelopsin enhances the expression of apoptosis inducing proteins. It regulates the expression of angiogenic and metastatic proteins to inhibit tumor growth. Expression of inflammatory markers has also been found to be suppressed by ampelopsin in cancer cells. The present review article describes various anti-tumor cellular targets of ampelopsin at a single podium which will help the researchers to understand mechanistic insight of this phytochemical.

9.
Pharmacol Res ; 186: 106523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36377125

RESUMO

Despite advanced clinical and translational oncology research, mortality rates are still increasing worldwide. Recently, a class of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been well investigated in regulating biological, molecular, and cellular signaling pathways. This review article provided the current research progress on how miRNAs, lncRNAs, and circRNAs regulate Hedgehog (Hh) and Hippo signaling pathways in various cancers. These ncRNAs target both pathways' key downstream molecules and may be used for targeted cancer treatment. Moreover, Hh and Hippo signaling pathways crosstalked with each other through Gli1 of Hh pathways and YAP1/TEAD molecules of Hippo pathways during cancer progression. Additionally, Hh and Hippo signaling pathways regulate resistance against the chemo, radio, and immune therapies for several types of cancer via inducing GLI and YAP/TAZ proteins level. Therefore, to improve the treatment regime, we presented the role of various prominent phytochemicals such as curcumin, resveratrol, genistein, quercetin, paclitaxel, and silibinin in regulating lncRNAs, miRNAs, circRNA through Hedgehog and Hippo signaling pathways' constituents in cancers. We believe that knowledge obtained from this review may help make new drugs for cancer treatment in the future.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Circular , Proteínas Hedgehog , Via de Sinalização Hippo , RNA não Traduzido/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
10.
Int J Breast Cancer ; 2022: 4958580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35655582

RESUMO

Background: The frozen section (FS) has been a good technique in surgical management of breast lesions since many years. But complete agreement and cooperation have not been achieved everywhere among surgeons and pathologists especially in the developing countries. FS undergoes continuous criticism due to various shortcomings but continued to be evaluated especially in developing countries. Objectives: This review was conducted to synthesize information on the use of frozen section in carcinoma breast. Data Sources. The MEDLINE database for frozen section since its origin and its implication in recent breast surgery techniques was studied. Study Eligibility Criteria. Sixty-five articles were reviewed with complete analysis on FS in both benign and malignant breast lesions. Study Appraisal and Synthesis Methods. The analysis of frozen section was done as a diagnostic tool in breast lesions, margin status in breast conservative surgery in carcinoma breast, and sentinel lymph node and use of immunohistochemistry for sentinel lymph node FS. Results: It was analysed that the FS gives accurate results in margin status analysis, decreasing rerecurrence. Conclusion: The accuracy of FSA, low recurrence rate, avoidance of reoperation, and good cosmesis are the key points of its use in breast conservative surgery. Its use in sentinel lymph node biopsy (SLNB) is equivocal. However, application of immunohistochemistry on frozen section of SLNB is an evolving trend in today's era.

11.
Cureus ; 14(6): e25773, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35702640

RESUMO

Immunohistochemistry (IHC) is a necessary ancillary technique in surgical pathology laboratories, particularly for oncology tissue specimens. Automation in the IHC technique has an advantage over manual methods in terms of quality, except for the cost of the equipment. Thus, the manual method of IHC staining is the preferred method of choice in countries with limited resources. However, standardization of all steps in the preanalytic phase is critical to obtain reliable immunohistochemistry test results. The current audit was conducted to describe the preanalytic factors affecting manual IHC methods. The most important preanalytic factors were fixative, the composition of dehydrate, pH, drying of sections, and heat-mediated antigen retrieval method (HMAR). The domestic pressure cooker method was found to be the best for HMAR.

12.
Cancer Treat Res Commun ; 32: 100593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35752082

RESUMO

Accumulating evidence suggests the critical role of miR-590-5p in various aspects of cellular homeostasis, including cancer. Furthermore, we and others have recently demonstrated that miRNA-590-5p acts as an oncogene in some cancers while it acts as a tumor-suppressor in others. However, the role of miR-590-5p in oncogenesis is more complex, like a double-edged sword. Thus, this systematic review introduces the concept, mechanism, and biological function of miR-590-5p to resolve this apparent paradox. We have also described the involvement of miR-590-5p in crucial cancer-hallmarks processes like proliferation, invasion, metastasis, and chemo radioresistance. Finally, we have presented the possible genes/pathways targets of miR-590-5p through bioinformatics analysis. This review may help in designing better biomarkers and therapeutic targets for cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Humanos , MicroRNAs/genética
13.
Curr Oncol ; 29(4): 2326-2349, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35448163

RESUMO

Despite the availability of modern techniques for the treatment of esophageal squamous cell carcinoma (ESCC), tumor recurrence and metastasis are significant challenges in clinical management. Thus, ESCC possesses a poor prognosis and low five-year overall survival rate. Notably, the origin and recurrence of the cancer phenotype are under the control of complex cancer-related signaling pathways. In this review, we provide comprehensive knowledge about long non-coding RNAs (lncRNAs) related to Wnt/ß-catenin and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway in ESCC and its implications in hindering the efficacy of chemotherapeutic drugs. We observed that a pool of lncRNAs, such as HERES, TUG1, and UCA1, associated with ESCC, directly or indirectly targets various molecules of the Wnt/ß-catenin pathway and facilitates the manifestation of multiple cancer phenotypes, including proliferation, metastasis, relapse, and resistance to anticancer treatment. Additionally, several lncRNAs, such as HCP5 and PTCSC1, modulate PI3K/Akt/mTOR pathways during the ESCC pathogenesis. Furthermore, a few lncRNAs, such as AFAP1-AS1 and LINC01014, block the efficiency of chemotherapeutic drugs, including cisplatin, 5-fluorouracil, paclitaxel, and gefitinib, used for ESCC treatment. Therefore, this review may help in designing a better therapeutic strategy for ESCC patients.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , RNA Longo não Codificante , Linhagem Celular Tumoral , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Recidiva Local de Neoplasia/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/uso terapêutico , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/uso terapêutico
14.
RSC Adv ; 12(13): 7594-7604, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424772

RESUMO

We selected the G-quadruplex motif located in the nuclease-hypersensitive elements (NHE) III1 region of the c-Myc promoter and for the first time performed its interaction studies with a designed peptide (QW10). Our CD results showed that the peptide bound to the c-Myc G-quadruplex and induced a significant blue shift in the positive peak of 20 nm in KCl alone or with 40wt% PEG200 or 20wt% PEG8000 in comparison to NaCl. Our Native Gel results confirmed that peptide binding destabilized the duplex and stabilized the unimolecular G-quadruplex and not binding to i-motif. UV thermal results confirmed destabilization of bimolecular structure and stabilization of unimolecular G-quadruplex. QW10 showed preferential binding towards c-MYC promoter G4 with binding constant (K b) values of the order of 0.05 ± 0.2 µM, 0.12 ± 0.1 µM and 0.05 ± 0.3 µM for complexes in K+ alone or 40wt% PEG 200 or 20wt% PEG 8000 respectively. QW10 showed preferential cytotoxicity with IC50 values of 11.10 µM and 6.44 µM after 72 and 96 hours' incubation on Human Breast Carcinoma MDA-MB 231 cells and was found to be non-toxic with Human Embryonic Kidney (HEK-1) cells. Interestingly, we observed reduction of c-Myc gene expression by 2.5 fold due to QW10 binding and stabilizing c-MYC G4. Our study for the first time provides an expanded overview of significant structural change in human c-Myc promoter G-quadruplex upon peptide binding in potassium.

15.
Mol Biol Rep ; 49(9): 8987-8999, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35474053

RESUMO

As a landmark, scientific investigation in cytokine signaling and interferon-related anti-viral activity, signal transducer and activator of transcription (STAT) family of proteins was first discovered in the 1990s. Today, we know that the STAT family consists of several transcription factors which regulate various molecular and cellular processes, including proliferation, angiogenesis, and differentiation in human carcinoma. STAT family members play an active role in transducing signals from cell membrane to nucleus through intracellular signaling and thus activating gene transcription. Additionally, they are also associated with the development and progression of human cancer by facilitating inflammation, cell survival, and resistance to therapeutic responses. Accumulating evidence suggests that not all STAT proteins are associated with the progression of human malignancy; however, STAT3/5 are constitutively activated in various cancers, including multiple myeloma, lymphoma, breast cancer, prostate hepatocellular carcinoma, and non-small cell lung cancer. The present review highlights how STAT-associated events are implicated in cancer inflammation, angiogenesis and non-coding RNA (ncRNA) modulation to highlight potential intervention into carcinogenesis-related cellular processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Neovascularização Patológica/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
16.
Int J Cancer ; 151(7): 981-992, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35489027

RESUMO

Accumulating evidence demonstrates that the host genome's epigenetic modifications are essential for living organisms to adapt to extreme conditions. DNA methylation, covalent modifications of histone and interassociation of noncoding RNAs facilitate the cellular manifestation of epigenetic changes in the genome. Out of various factors involved in the epigenetic programming of the host, noncoding RNAs (ncRNAs) such as microRNA (miRNA), long noncoding RNA (lncRNA), circular RNA, snoRNA and piRNA are new generation noncoding molecules that influence a variety of cellular processes like immunity, cellular differentiation and tumor development. During tumor development, temporal changes in miRNA/lncRNA rheostat influence sterile inflammatory responses accompanied by the changes in the carcinogenic signaling in the host. At the cellular level, this is manifested by the upregulation of inflammasome and inflammatory pathways, which promotes cancer-related inflammation. Given this, we discuss the potential of lncRNAs, miRNAs, circular RNA, snoRNA and piRNA in regulating inflammation and tumor development in the host.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Inflamação , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno , RNA Nucleolar Pequeno , RNA não Traduzido/genética
17.
Front Oncol ; 12: 823953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237522

RESUMO

BACKGROUND: Despite the availability of advanced technology to detect and treat esophageal squamous cell carcinoma (ESCC), the 5-year survival rate of ESCC patients is still meager. Recently, long non-coding RNAs (lncRNAs) have emerged as essential players in the diagnosis and prognosis of various cancers. OBJECTIVE: This pilot study focused on identifying circulating lncRNAs as liquid biopsy markers for the ESCC. METHODOLOGY: We performed next-generation sequencing (NGS) to profile circulating lncRNAs in ESCC and healthy individuals' blood samples. The expression of the top five upregulated and top five downregulated lncRNAs were validated through quantitative real-time PCR (qRT-PCR), including samples used for the NGS. Later, we explored the diagnostic/prognostic potential of lncRNAs and their impact on the clinicopathological parameters of patients. To unravel the molecular target and pathways of identified lncRNAs, we utilized various bioinformatics tools such as lncRnome, RAID v2.0, Starbase, miRDB, TargetScan, Gene Ontology, and KEGG pathways. RESULTS: Through NGS profiling, we obtained 159 upregulated, 137 downregulated, and 188 neutral lncRNAs in ESCC blood samples compared to healthy individuals. Among dysregulated lncRNAs, we observed LINC00324 significantly upregulated (2.11-fold; p-value = 0.0032) and LOC100507053 significantly downregulated (2.22-fold; p-value = 0.0001) in ESCC patients. Furthermore, we found LINC00324 and LOC100507053 could discriminate ESCC cancer patients' from non-cancer individuals with higher accuracy of Area Under the ROC Curve (AUC) = 0.627 and 0.668, respectively. The Kaplan-Meier and log-rank analysis revealed higher expression levels of LINC00324 and lower expression levels of LOC100507053 well correlated with the poor prognosis of ESCC patients with a Hazard ratio of LINC00324 = 2.48 (95% CI: 1.055 to 5.835) and Hazard ratio of LOC100507053 = 4.75 (95% CI: 2.098 to 10.76)]. Moreover, we also observed lncRNAs expression well correlated with the age (>50 years), gender (Female), alcohol, tobacco, and hot beverages consumers. Using bioinformatics tools, we saw miR-493-5p as the direct molecular target of LINC00324 and interacted with the MAPK signaling pathway in ESCC pathogenesis. CONCLUSION: This pilot study suggests that circulating LINC00324 and LOC100507053 can be used as a liquid biopsy marker of ESCC; however, multicentric studies are still warranted.

18.
iScience ; 25(2): 103802, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35198868

RESUMO

Leishmaniasis is a neglected tropical disease endemic in over 90 countries. The disease has two main pathologies; cutaneous leishmaniasis (CL) that generally self-heals, and visceral leishmaniasis (VL) that is fatal if untreated. The majority of VL cases, concentrated on the Indian subcontinent (ISC) and East Africa, are caused by Leishmania donovani. However, recent foci of CL on the ISC have been attributed as an atypical phenotype of L. donovani including a recent outbreak in Himachal Pradesh, India. Whole genome sequencing and phylogenetic analysis was undertaken to investigate the origins and genetic factors leading to this pathology atypical of L. donovani. Here we demonstrate the isolate from Himachal Pradesh is derived from a genetic hybridization between two independent L. donovani parents from the 'Yeti' ISC1 divergent clade of parasites, identified in the Nepalese highlands. This reveals that intraspecies L. donovani hybrids can give rise to a novel strain associated with CL.

19.
Biomark Med ; 16(5): 349-369, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35195032

RESUMO

Recently, long intergenic non-protein coding RNA 01133 (LINC01133) was identified as a novel transcript in cancers. It modulates various hallmarks of cancers and acts as oncogenic in some cancers while tumor-suppressive in others. Furthermore, the expression of LINC01133 correlates with tumor size, advanced tumor node metastasis stage and lymphatic node metastasis, Ki-67 levels and overall survival of patients. Herein, the authors provide an in-depth analysis describing how LINC01133 modulates the multiple cancer-associated signaling pathways and the pathogenesis of various malignancies and treatment regimens. Based on the role played by LINC01133, the authors propose LINC01133 as both a potential biomarker and a therapeutic target in cancer.


Assuntos
Neoplasias , RNA Longo não Codificante , Biomarcadores , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Neoplasias/diagnóstico , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
20.
Crit Rev Oncol Hematol ; 171: 103598, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033662

RESUMO

Several studies have demonstrated the potential of circulating long non-coding RNAs (lncRNAs) as promising cancer biomarkers. Herein, we addressed the regulatory role of circulating lncRNAs and their potential value as diagnostic/prognostic markers for thyroid, pancreatic and ovarian cancers. Furthermore, we analyzed and measured the clinical implications and association of lncRNAs with sensitivity, specificity, and area under the ROC curve (AUC). Based on our meta-analysis, we found that GAS8-AS1 could discriminate thyroid cancer from non-cancer and other cancers with higher accuracy (AUC = 0.746; sensitivity = 61.70 %, and specificity = 90.00 %). Similarly, for ovarian cancer, lncRNA RP5-837J1.2 was found to have ideal diagnostic potential with critical clinical specifications of AUC = 0.996; sensitivity = 97.30 % and specificity = 94.60 %. Whereas we could not find any lncRNA having high diagnostic/prognostic efficiency in pancreatic cancer. We believe that lncRNAs mentioned above may explore clinical settings for the diagnosis and prognosis of cancer patients.


Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genética , Prognóstico , RNA Longo não Codificante/genética , Glândula Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA