Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1942, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431634

RESUMO

Arl1 is an Arf-like (Arl) GTP-binding protein that interacts with the guanine nucleotide exchange factor Gea2 to recruit the golgin Imh1 to the Golgi. The Arl1-Gea2 complex also binds and activates the phosphatidylserine flippase Drs2 and these functions may be related, although the underlying molecular mechanism is unclear. Here we report high-resolution cryo-EM structures of the full-length Gea2 and the Arl1-Gea2 complex. Gea2 is a large protein with 1459 residues and is composed of six domains (DCB, HUS, SEC7, HDS1-3). We show that Gea2 assembles a stable dimer via an extensive interface involving hydrophobic and electrostatic interactions in the DCB and HUS region. Contrary to the previous report on a Gea2 homolog in which Arl1 binds to the dimerization surface of the DCB domain, implying a disrupted dimer upon Arl1 binding, we find that Arl1 binds to the outside surface of the Gea2 DCB domain, leaving the Gea2 dimer intact. The interaction between Arl1 and Gea2 involves the classic FWY aromatic residue triad as well as two Arl1-specific residues. We show that key mutations that disrupt the Arl1-Gea2 interaction abrogate Imh1 Golgi association. This work clarifies the Arl1-Gea2 interaction and improves our understanding of molecular events in the membrane trafficking.


Assuntos
Fatores de Ribosilação do ADP , Proteínas de Membrana , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Estrutura Terciária de Proteína , Complexo de Golgi/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1871(4): 119700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382846

RESUMO

Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.


Assuntos
Adenosina Trifosfatases , Caenorhabditis elegans , Animais , Adenosina Trifosfatases/metabolismo , Caenorhabditis elegans/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Lipídeos , Mamíferos/metabolismo
3.
Infect Immun ; 90(11): e0041622, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36214556

RESUMO

Candida albicans is a common cause of human mucosal yeast infections, and invasive candidiasis can be fatal. Antifungal medications are limited, but those targeting the pathogen cell wall or plasma membrane have been effective. Therefore, virulence factors controlling membrane biogenesis are potential targets for drug development. P4-ATPases contribute to membrane biogenesis by selecting and transporting specific lipids from the extracellular leaflet to the cytoplasmic leaflet of the bilayer to generate lipid asymmetry. A subset of heterodimeric P4-ATPases, including Dnf1-Lem3 and Dnf2-Lem3 from Saccharomyces cerevisiae, transport phosphatidylcholine (PC), phosphatidylethanolamine (PE), and the sphingolipid glucosylceramide (GlcCer). GlcCer is a critical lipid for Candida albicans polarized growth and virulence, but the role of GlcCer transporters in virulence has not been explored. Here, we show that the Candida albicans Dnf2 (CaDnf2) requires association with CaLem3 to form a functional transporter and flip fluorescent derivatives of GlcCer, PC, and PE across the plasma membrane. Mutation of conserved substrate-selective residues in the membrane domain strongly abrogates GlcCer transport and partially disrupts PC transport by CaDnf2. Candida strains harboring dnf2-null alleles (dnf2ΔΔ) or point mutations that disrupt substrate recognition exhibit defects in yeast-to-hypha growth transition, filamentous growth, and virulence in systemically infected mice. The influence of CaDNF1 deletion on the morphological phenotypes is negligible, although the dnf1ΔΔ dnf2ΔΔ strain was less virulent than the dnf2ΔΔ strain. These results indicate that the transport of GlcCer and/or PC by plasma membrane P4-ATPases is important for the pathogenicity of Candida albicans.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Camundongos , Animais , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Candida albicans , Virulência , Adenosina Trifosfatases/genética , Proteínas de Membrana Transportadoras/genética , Hifas , Transportadores de Cassetes de Ligação de ATP/genética
4.
Nat Commun ; 12(1): 5963, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645814

RESUMO

P4 ATPases are lipid flippases that are phylogenetically grouped into P4A, P4B and P4C clades. The P4A ATPases are heterodimers composed of a catalytic α-subunit and accessory ß-subunit, and the structures of several heterodimeric flippases have been reported. The S. cerevisiae Neo1 and its orthologs represent the P4B ATPases, which function as monomeric flippases without a ß-subunit. It has been unclear whether monomeric flippases retain the architecture and transport mechanism of the dimeric flippases. Here we report the structure of a P4B ATPase, Neo1, in its E1-ATP, E2P-transition, and E2P states. The structure reveals a conserved architecture as well as highly similar functional intermediate states relative to dimeric flippases. Consistently, structure-guided mutagenesis of residues in the proposed substrate translocation path disrupted Neo1's ability to establish membrane asymmetry. These observations indicate that evolutionarily distant P4 ATPases use a structurally conserved mechanism for substrate transport.


Assuntos
Adenosina Trifosfatases/química , Lisofosfolipídeos/química , Proteínas de Membrana Transportadoras/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/química , Membrana Celular/enzimologia , Clonagem Molecular , Microscopia Crioeletrônica , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
5.
Elife ; 92020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320091

RESUMO

The P4 ATPases use ATP hydrolysis to transport large lipid substrates across lipid bilayers. The structures of the endosome- and Golgi-localized phosphatidylserine flippases-such as the yeast Drs2 and human ATP8A1-have recently been reported. However, a substrate-binding site on the cytosolic side has not been found, and the transport mechanisms of P4 ATPases with other substrates are unknown. Here, we report structures of the S. cerevisiae Dnf1-Lem3 and Dnf2-Lem3 complexes. We captured substrate phosphatidylcholine molecules on both the exoplasmic and cytosolic sides and found that they have similar structures. Unexpectedly, Lem3 contributes to substrate binding. The conformational transitions of these phosphatidylcholine transporters match those of the phosphatidylserine transporters, suggesting a conserved mechanism among P4 ATPases. Dnf1/Dnf2 have a unique P domain helix-turn-helix insertion that is important for function. Therefore, P4 ATPases may have retained an overall transport mechanism while evolving distinct features for different lipid substrates.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , ATPases do Tipo-P/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico Ativo/fisiologia , Membrana Celular/metabolismo , Hidrólise , Bicamadas Lipídicas/metabolismo , Fosfatidilcolinas/metabolismo , Conformação Proteica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo
6.
FEBS Lett ; 590(5): 631-43, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813731

RESUMO

Size regulation of human cell nucleus and nucleolus are poorly understood subjects. 3D reconstruction of live image shows that the karyoplasmic ratio (KR) increases by 30-80% in transformed cell lines compared to their immortalized counterpart. The attenuation of nucleo-cytoplasmic transport causes the KR value to increase by 30-50% in immortalized cell lines. Nucleolus volumes are significantly increased in transformed cell lines and the attenuation of nucleo-cytoplasmic transport causes a significant increase in the nucleolus volume of immortalized cell lines. A cytosol and nuclear fraction swapping experiment emphasizes the potential role of unknown cytosolic factors in nuclear and nucleolar size regulation.


Assuntos
Nucléolo Celular/metabolismo , Tamanho do Núcleo Celular , Transporte Ativo do Núcleo Celular , Linhagem Celular , Citosol/metabolismo , Humanos , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA