RESUMO
Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.
RESUMO
DNA-based technologies have been used in forensic practice since the mid-1980s. While PCR-based STR genotyping using Capillary Electrophoresis remains the gold standard for generating DNA profiles in routine casework worldwide, the research community is continually seeking alternative methods capable of providing additional information to enhance discrimination power or contribute with new investigative leads. Oxford Nanopore Technologies (ONT) and PacBio third-generation sequencing have revolutionized the field, offering real-time capabilities, single-molecule resolution, and long-read sequencing (LRS). ONT, the pioneer of nanopore sequencing, uses biological nanopores to analyze nucleic acids in real-time. Its devices have revolutionized sequencing and may represent an interesting alternative for forensic research and routine casework, given that it offers unparalleled flexibility in a portable size: it enables sequencing approaches that range widely from PCR-amplified short target regions (e.g., CODIS STRs) to PCR-free whole transcriptome or even ultra-long whole genome sequencing. Despite its higher error rate compared to Illumina sequencing, it can significantly improve accuracy in read alignment against a reference genome or de novo genome assembly. This is achieved by generating long contiguous sequences that correctly assemble repetitive sections and regions with structural variation. Moreover, it allows real-time determination of DNA methylation status from native DNA without the need for bisulfite conversion. LRS enables the analysis of thousands of markers at once, providing phasing information and eliminating the need for multiple assays. This maximizes the information retrieved from a single invaluable sample. In this review, we explore the potential use of LRS in different forensic genetics approaches.
RESUMO
Transfer RNAs (tRNAs) contain dozens of chemical modifications. These modifications are critical for maintaining tRNA tertiary structure and optimizing protein synthesis. Here we advance the use of Nanopore direct RNA-sequencing (DRS) to investigate the synergy between modifications that are known to stabilize tRNA structure. We sequenced the 42 cytosolic tRNA isoacceptors from wild-type yeast and five tRNA-modifying enzyme knockout mutants. These data permitted comprehensive analysis of three neighboring and conserved modifications in T-loops: 5-methyluridine (m5U54), pseudouridine (Ψ55), and 1-methyladenosine (m1A58). Our results were validated using direct measurements of chemical modifications by mass spectrometry. We observed concerted T-loop modification circuits-the potent influence of Ψ55 for subsequent m1A58 modification on more tRNA isoacceptors than previously observed. Growing cells under nutrient depleted conditions also revealed a novel condition-specific increase in m1A58 modification on some tRNAs. A global and isoacceptor-specific classification strategy was developed to predict the status of T-loop modifications from a user-input tRNA DRS dataset, applicable to other conditions and tRNAs in other organisms. These advancements demonstrate how orthogonal technologies combined with genetics enable precise detection of modification landscapes of individual, full-length tRNAs, at transcriptome-scale.
RESUMO
GC-rich tandem repeat expansions (TREs) are often associated with DNA methylation, gene silencing and folate-sensitive fragile sites, and underlie several congenital and late-onset disorders. Through a combination of DNA-methylation profiling and tandem repeat genotyping, we identified 24 methylated TREs and investigated their effects on human traits using phenome-wide association studies in 168,641 individuals from the UK Biobank, identifying 156 significant TRE-trait associations involving 17 different TREs. Of these, a GCC expansion in the promoter of AFF3 was associated with a 2.4-fold reduced probability of completing secondary education, an effect size comparable to several recurrent pathogenic microdeletions. In a cohort of 6,371 probands with neurodevelopmental problems of suspected genetic etiology, we observed a significant enrichment of AFF3 expansions compared with controls. With a population prevalence that is at least fivefold higher than the TRE that causes fragile X syndrome, AFF3 expansions represent a major cause of neurodevelopmental delay.
RESUMO
The ability to sequence single protein molecules in their native, full-length form would enable a more comprehensive understanding of proteomic diversity. Current technologies, however, are limited in achieving this goal1,2. Here, we establish a method for the long-range, single-molecule reading of intact protein strands on a commercial nanopore sensor array. By using the ClpX unfoldase to ratchet proteins through a CsgG nanopore3,4, we provide single-molecule evidence that ClpX translocates substrates in two-residue steps. This mechanism achieves sensitivity to single amino acids on synthetic protein strands hundreds of amino acids in length, enabling the sequencing of combinations of single-amino-acid substitutions and the mapping of post-translational modifications, such as phosphorylation. To enhance classification accuracy further, we demonstrate the ability to reread individual protein molecules multiple times, and we explore the potential for highly accurate protein barcode sequencing. Furthermore, we develop a biophysical model that can simulate raw nanopore signals a priori on the basis of residue volume and charge, enhancing the interpretation of raw signal data. Finally, we apply these methods to examine full-length, folded protein domains for complete end-to-end analysis. These results provide proof of concept for a platform that has the potential to identify and characterize full-length proteoforms at single-molecule resolution.
Assuntos
Nanoporos , Proteínas , Análise de Sequência de Proteína , Imagem Individual de Molécula , Substituição de Aminoácidos , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Imagem Individual de Molécula/métodosRESUMO
Chemical modifications to mRNA respond dynamically to environmental cues and are important modulators of gene expression. Nanopore direct RNA sequencing has been applied for assessing the presence of pseudouridine (ψ) modifications through basecalling errors and signal analysis. These approaches strongly depend on the sequence context around the modification, and the occupancies derived from these measurements are not quantitative. In this work, we combine direct RNA sequencing of synthetic RNAs bearing site-specific modifications and supervised machine learning models (ModQuant) to achieve near-analytical, site-specific ψ quantification. Our models demonstrate that the ionic current signal features important for accurate ψ classification are sequence dependent and encompass information extending beyond n + 2 and n - 2 nucleotides from the ψ site. This is contradictory to current models, which assume that accurate ψ classification can be achieved with signal information confined to the 5-nucleotide k-mer window (n + 2 and n - 2 nucleotides from the ψ site). We applied our models to quantitatively profile ψ occupancy in five mRNA sites in datasets from seven human cell lines, demonstrating conserved and variable sites. Our study motivates a wider pipeline that uses ground-truth RNA control sets with site-specific modifications for quantitative profiling of RNA modifications. The ModQuant pipeline and guide are freely available at https://github.com/wanunulab/ModQuant .
Assuntos
Pseudouridina , RNA Mensageiro , Pseudouridina/metabolismo , Pseudouridina/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nanoporos , Análise de Sequência de RNA/métodos , RNA/genética , RNA/metabolismoRESUMO
The Genome in a Bottle Consortium (GIAB), hosted by the National Institute of Standards and Technology (NIST), is developing new matched tumor-normal samples, the first to be explicitly consented for public dissemination of genomic data and cell lines. Here, we describe a comprehensive genomic dataset from the first individual, HG008, including DNA from an adherent, epithelial-like pancreatic ductal adenocarcinoma (PDAC) tumor cell line and matched normal cells from duodenal and pancreatic tissues. Data for the tumor-normal matched samples comes from thirteen distinct state-of-the-art whole genome measurement technologies, including high depth short and long-read bulk whole genome sequencing (WGS), single cell WGS, and Hi-C, and karyotyping. These data will be used by the GIAB Consortium to develop matched tumor-normal benchmarks for somatic variant detection. We expect these data to facilitate innovation for whole genome measurement technologies, de novo assembly of tumor and normal genomes, and bioinformatic tools to identify small and structural somatic mutations. This first-of-its-kind broadly consented open-access resource will facilitate further understanding of sequencing methods used for cancer biology.
RESUMO
Nanopore direct RNA sequencing (DRS) enables measurements of RNA modifications. Modification-free transcripts are a practical and targeted control for DRS, providing a baseline measurement for canonical nucleotides within a matched and biologically-derived sequence context. However, these controls can be challenging to generate and carry nanopore-specific nuances that can impact analyses. We produced DRS datasets using modification-free transcripts from in vitro transcription of cDNA from six immortalized human cell lines. We characterized variation across cell lines and demonstrated how these may be interpreted. These data will serve as a versatile control and resource to the community for RNA modification analyses of human transcripts.
RESUMO
Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy. However, using local haplotype information creates an overhead as variant calling needs to be performed multiple times which ultimately makes it difficult to extend to new data types and platforms as they get introduced. In this work, we have developed a local haplotype approximate method that enables state-of-the-art variant calling performance with multiple sequencing platforms including PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of local haplotype approximation simplifies long-read variant calling with DeepVariant.
Assuntos
Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Haplótipos/genética , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Polimorfismo de Nucleotídeo Único , Genoma Humano , Algoritmos , Variação Genética , Redes Neurais de ComputaçãoRESUMO
Pseudouridine (psi) is one of the most abundant human mRNA modifications generated from the isomerization of uridine via psi synthases, including TRUB1 and PUS7. Nanopore direct RNA sequencing combined with our recent tool, Mod-p ID, enables psi mapping, transcriptome-wide, without chemical derivatization of the input RNA and/or conversion to cDNA. This method is sensitive for detecting changes in positional psi occupancies across cell types, which can inform our understanding of the impact on gene expression. We sequenced, mapped, and compared the positional psi occupancy across six immortalized human cell lines derived from diverse tissue types. We found that lung-derived cells have the highest proportion of psi, while liver-derived cells have the lowest. Further, among a list of highly conserved sites across cell types, most are TRUB1 substrates and fall within the coding sequence. We find that these conserved psi positions correspond to higher levels of protein expression than expected, suggesting translation regulation. Interestingly, we identify cell type-specific sites of psi modification in ubiquitously expressed genes. We validate these sites by ruling out single-nucleotide variants, analyzing current traces, and performing enzymatic knockdowns of psi synthases. Finally, we characterize sites with multiple psi modifications on the same transcript (hypermodification type II) and found that these can be conserved or cell type specific. Among these, we discovered examples of multiple psi modifications within the same k-mer for the first time and analyzed the effect on current distribution. Our data support the hypothesis that motif sequence and the presence of psi synthase are insufficient to drive modifications, that psi modifications contribute to regulating translation and that cell type-specific trans-acting factors play a major role in driving pseudouridylation.
RESUMO
Reference-free genome phasing is vital for understanding allele inheritance and the impact of single-molecule DNA variation on phenotypes. To achieve thorough phasing across homozygous or repetitive regions of the genome, long-read sequencing technologies are often used to perform phased de novo assembly. As a step toward reducing the cost and complexity of this type of analysis, we describe new methods for accurately phasing Oxford Nanopore Technologies (ONT) sequence data with the Shasta genome assembler and a modular tool for extending phasing to the chromosome scale called GFAse. We test using new variants of ONT PromethION sequencing, including those using proximity ligation, and show that newer, higher accuracy ONT reads substantially improve assembly quality.
Assuntos
Nanoporos , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento por Nanoporos/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Genômica/métodosRESUMO
Chemical modifications in mRNAs such as pseudouridine (psi) can regulate gene expression, although our understanding of the functional impact of individual psi modifications, especially in neuronal cells, is limited. We apply nanopore direct RNA sequencing to investigate psi dynamics under cellular perturbations in SH-SY5Y cells. We assign sites to psi synthases using siRNA-based knockdown. A steady-state enzyme-substrate model reveals a strong correlation between psi synthase and mRNA substrate levels and psi modification frequencies. Next, we performed either differentiation or lead-exposure to SH-SY5Y cells and found that, upon lead exposure, not differentiation, the modification frequency is less dependent on enzyme levels suggesting translational control. Finally, we compared the plasticity of psi sites across cellular states and found that plastic sites can be condition-dependent or condition-independent; several of these sites fall within transcripts encoding proteins involved in neuronal processes. Our psi analysis and validation enable investigations into the dynamics and plasticity of RNA modifications.
RESUMO
Less than half of individuals with a suspected Mendelian condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.
RESUMO
DNA methylation most commonly occurs as 5-methylcytosine (5-mC) in the human genome and has been associated with human diseases. Recent developments in single-molecule sequencing technologies (Oxford Nanopore Technologies (ONT) and Pacific Biosciences) have enabled readouts of long, native DNA molecules, including cytosine methylation. ONT recently upgraded their Nanopore sequencing chemistry and kits from R9 to the R10 version, which yielded increased accuracy and sequencing throughput. However the effects on methylation detection have not yet been documented. Here we performed a series of computational analyses to characterize differences in Nanopore-based 5mC detection between the ONT R9 and R10 chemistries. We compared 5mC calls in R9 and R10 for three human genome datasets: a cell line, a frontal cortex brain sample, and a blood sample. We performed an in-depth analysis on CpG islands and homopolymer regions, and documented high concordance for methylation detection among sequencing technologies. The strongest correlation was observed between Nanopore R10 and Illumina bisulfite technologies for cell line-derived datasets. Subtle differences in methylation datasets between technologies can impact analysis tools such as differential methylation calling software. Our findings show that comparisons can be drawn between methylation data from different Nanopore chemistries using guided hypotheses. This work will facilitate comparison among Nanopore data cohorts derived using different chemistries from large scale sequencing efforts, such as the NIH CARD Long Read Initiative.
RESUMO
Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford nanopore technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy. However, using local haplotype information creates an overhead as variant calling needs to be performed multiple times which ultimately makes it difficult to extend to new data types and platforms as they get introduced. In this work, we have developed a local haplotype approximate method that enables state-of-the-art variant calling performance with multiple sequencing platforms including PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of local haplotype approximation makes DeepVariant a universal variant calling solution for long-read sequencing platforms.
RESUMO
Long-read sequencing technologies substantially overcome the limitations of short-reads but have not been considered as a feasible replacement for population-scale projects, being a combination of too expensive, not scalable enough or too error-prone. Here we develop an efficient and scalable wet lab and computational protocol, Napu, for Oxford Nanopore Technologies long-read sequencing that seeks to address those limitations. We applied our protocol to cell lines and brain tissue samples as part of a pilot project for the National Institutes of Health Center for Alzheimer's and Related Dementias. Using a single PromethION flow cell, we can detect single nucleotide polymorphisms with F1-score comparable to Illumina short-read sequencing. Small indel calling remains difficult within homopolymers and tandem repeats, but achieves good concordance to Illumina indel calls elsewhere. Further, we can discover structural variants with F1-score on par with state-of-the-art de novo assembly methods. Our protocol phases small and structural variants at megabase scales and produces highly accurate, haplotype-specific methylation calls.
Assuntos
Genoma Humano , Sequenciamento por Nanoporos , Humanos , Análise de Sequência de DNA/métodos , Haplótipos , Metilação , Projetos Piloto , Sequenciamento de Nucleotídeos em Larga Escala/métodosRESUMO
The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.
Assuntos
Cromossomos Humanos Y , Genômica , Análise de Sequência de DNA , Humanos , Sequência de Bases , Cromossomos Humanos Y/genética , DNA Satélite/genética , Variação Genética/genética , Genética Populacional , Genômica/métodos , Genômica/normas , Heterocromatina/genética , Família Multigênica/genética , Padrões de Referência , Duplicações Segmentares Genômicas/genética , Análise de Sequência de DNA/normas , Sequências de Repetição em Tandem/genética , Telômero/genéticaRESUMO
Liquid biopsies provide a means for the profiling of cell-free RNAs secreted by cells throughout the body. Although well-annotated coding and non-coding transcripts in blood are readily detectable and can serve as biomarkers of disease, the overall diagnostic utility of the cell-free transcriptome remains unclear. Here we show that RNAs derived from transposable elements and other repeat elements are enriched in the cell-free transcriptome of patients with cancer, and that they serve as signatures for the accurate classification of the disease. We used repeat-element-aware liquid-biopsy technology and single-molecule nanopore sequencing to profile the cell-free transcriptome in plasma from patients with cancer and to examine millions of genomic features comprising all annotated genes and repeat elements throughout the genome. By aggregating individual repeat elements to the subfamily level, we found that samples with pancreatic cancer are enriched with specific Alu subfamilies, whereas other cancers have their own characteristic cell-free RNA profile. Our findings show that repetitive RNA sequences are abundant in blood and can be used as disease-specific diagnostic biomarkers.
Assuntos
Neoplasias , RNA , Humanos , RNA/genética , Sequência de Bases , Elementos de DNA Transponíveis , Plasma , Neoplasias/diagnóstico , Neoplasias/genética , BiomarcadoresRESUMO
GC-rich tandem repeat expansions (TREs) are often associated with DNA methylation, gene silencing and folate-sensitive fragile sites and underlie several congenital and late-onset disorders. Through a combination of DNA methylation profiling and tandem repeat genotyping, we identified 24 methylated TREs and investigated their effects on human traits using PheWAS in 168,641 individuals from the UK Biobank, identifying 156 significant TRE:trait associations involving 17 different TREs. Of these, a GCC expansion in the promoter of AFF3 was linked with a 2.4-fold reduced probability of completing secondary education, an effect size comparable to several recurrent pathogenic microdeletions. In a cohort of 6,371 probands with neurodevelopmental problems of suspected genetic etiology, we observed a significant enrichment of AFF3 expansions compared to controls. With a population prevalence that is at least 5-fold higher than the TRE that causes fragile X syndrome, AFF3 expansions represent a significant cause of neurodevelopmental delay.
RESUMO
Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.