Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(30): 16584-16596, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37487055

RESUMO

In this work, we have fabricated an aryl amino-substituted graphitic carbon nitride (g-C3N4) catalyst with atomically dispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibited excellent reactivity, obtaining up to 2230 µM H2O2 in 7 h from alkaline water and up to 1800 µM from seawater under identical conditions. More importantly, the catalyst was quickly recovered for subsequent reuse without appreciable loss in performance. Interestingly, unlike the usual two-electron oxygen reduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction (WOR) process in which both the direct and indirect WOR processes occurred; namely, photoinduced h+ directly oxidized H2O to H2O2 via a one-step 2e- WOR, and photoinduced h+ first oxidized a hydroxide (OH-) ion to generate a hydroxy radical (•OH), and H2O2 was formed indirectly by the combination of two •OH. We have characterized the material, at the catalytic sites, at the atomic level using electron paramagnetic resonance, X-ray absorption near edge structure, extended X-ray absorption fine structure, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, magic-angle spinning solid-state NMR spectroscopy, and multiscale molecular modeling, combining classical reactive molecular dynamics simulations and quantum chemistry calculations.

2.
Nat Commun ; 14(1): 4462, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491427

RESUMO

Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF4) or heterogeneous (CaF2) shell domains on optically-active α-NaYF4:Yb:Er (with and without Ce3+ co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm2; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm.

3.
Micron ; 169: 103444, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965270

RESUMO

High-resolution transmission electron microscopy (TEM) of organic crystals, such as Lead Phthalocyanine (PbPc), is very challenging since these materials are prone to electron beam damage leading to the breakdown of the crystal structure during investigation. Quantification of the damage is imperative to enable high-resolution imaging of PbPc crystals with minimum structural changes. In this work, we performed a detailed electron diffraction study to quantitatively measure degradation of PbPc crystals upon electron beam irradiation. Our study is based on the quantification of the fading intensity of the spots in the electron diffraction patterns. At various incident dose rates (e/Å2/s) and acceleration voltages, we experimentally extracted the decay rate (1/s), which directly correlates with the rate of beam damage. In this manner, a value for the critical dose (e/Å2) could be determined, which can be used as a measure to quantify beam damage. Using the same methodology, we explored the influence of cryogenic temperatures, graphene TEM substrates, and graphene encapsulation in prolonging the lifetime of the PbPc crystal structure during TEM investigation. The knowledge obtained by diffraction experiments is then translated to real space high-resolution TEM imaging of PbPc.

4.
Nat Chem ; 12(12): 1115-1122, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33139932

RESUMO

Mono- or few-layer sheets of covalent organic frameworks (COFs) represent an attractive platform of two-dimensional materials that hold promise for tailor-made functionality and pores, through judicious design of the COF building blocks. But although a wide variety of layered COFs have been synthesized, cleaving their interlayer stacking to obtain COF sheets of uniform thickness has remained challenging. Here, we have partitioned the interlayer space in COFs by incorporating pseudorotaxane units into their backbones. Macrocyclic hosts based on crown ethers were embedded into either a ditopic or a tetratopic acylhydrazide building block. Reaction with a tritopic aldehyde linker led to the formation of acylhydrazone-based layered COFs in which one basal plane is composed of either one layer, in the case of the ditopic macrocyclic component, or two adjacent layers covalently held together by its tetratopic counterpart. When a viologen threading unit is introduced, the formation of a host-guest complex facilitates the self-exfoliation of the COFs into crystalline monolayers or bilayers, respectively.

5.
Nanoscale ; 11(46): 22423-22431, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31740914

RESUMO

Activity and long-term stability of oxide-metal heterostructure catalysts can be engineered through tuning the oxygen storage capacity (OSC) of the support and careful control of the composition of the supported metal nanoparticle. In this work, we probe these two factors for microwave-synthesized PtCu alloy nanoparticles supported on reduced-SrTiO3. The heterostructures are tested for their activity towards preferential CO oxidation in the presence of H2 at typical operating temperatures used for polymer electrolyte membrane fuel cells (PEMFCs). Through controlled temperature programmed reduction/temperature programmed oxidation (TPR/TPO) experiments, we show that the OSC of the support can be enhanced through heavy surface reduction of SrTiO3. Adsorption-desorption experiments establish the strikingly different CO adsorption behavior over monometallic Pt and PtCu alloy nanoparticles. Through detailed catalytic studies, we establish a trend in the selectivity and stability of CO conversions over the PtCu alloy catalysts that can indeed be tuned by varying the PtCu composition in a facile microwave synthesis.

6.
Nanoscale Adv ; 1(12): 4938-4946, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133134

RESUMO

Surface reducibility engineering is one of the vital tools to enhance the catalytic activity of materials. A heavy redox treatment can be utilized to affect the structure and surface of catalytic materials. Here, we choose SrTiO3 (STO) with a cubic perovskite structure as a system to induce oxygen vacancies by using nascent hydrogen from NaBH4 leading to a heavily reduced version of SrTiO3 (RSTO). To further understand the surface reduction and its dependence on foreign-ion (Ba) incorporation into SrTiO3, Sr0.5Ba0.5TiO3 (SBTO) and BaTiO3 (BTO) are synthesized using a facile hydrothermal method. The reduced version of the pristine and mixed oxide shows distinct optical absorptions, indicating oxygen vacancy-mediated reducibility engineering. Detailed CO oxidation experiments suggest the order of activity over the as-prepared and reduced supports as STO > SBTO > BTO and RSBTO > RSTO > RBTO, respectively. The interesting observation of reversal of CO oxidation activity over STO and SBTO after reduction negates the assumption of a similar intensity of reduction on the surfaces of these oxide supports. The fundamental aspect of surface reducibility is addressed using temperature programmed reduction/oxidation (TPR/TPO) and XPS.

7.
EMBO Mol Med ; 9(11): 1504-1520, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28923828

RESUMO

Neonatal chronic lung disease (nCLD) affects a significant number of neonates receiving mechanical ventilation with oxygen-rich gas (MV-O2). Regardless, the primary molecular driver of the disease remains elusive. We discover significant enrichment for SNPs in the PDGF-Rα gene in preterms with nCLD and directly test the effect of PDGF-Rα haploinsufficiency on the development of nCLD using a preclinical mouse model of MV-O2 In the context of MV-O2, attenuated PDGF signaling independently contributes to defective septation and endothelial cell apoptosis stemming from a PDGF-Rα-dependent reduction in lung VEGF-A. TGF-ß contributes to the PDGF-Rα-dependent decrease in myofibroblast function. Remarkably, endotracheal treatment with exogenous PDGF-A rescues both the lung defects in haploinsufficient mice undergoing MV-O2 Overall, our results establish attenuated PDGF signaling as an important driver of nCLD pathology with provision of PDGF-A as a protective strategy for newborns undergoing MV-O2.


Assuntos
Pneumopatias/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Doença Crônica , Fibroblastos/citologia , Fibroblastos/metabolismo , Haploinsuficiência , Células Endoteliais da Veia Umbilical Humana , Humanos , Recém-Nascido , Pulmão/metabolismo , Pneumopatias/metabolismo , Pneumopatias/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Respiração Artificial , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Indian J Dermatol ; 60(2): 215, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25814749

RESUMO

Primary anetoderma is a rare idiopathic disease of the skin, characterized by circumscribed areas of loose skin, and loss of elastic fibers upon histopathologic examination. Two forms are traditionally distinguished, primary and secondary. Primary anetoderma occurs when there is no underlying associated skin disease, whereas the latter refers to an abnormal repair mechanism of preexisting skin lesions. We are reporting a case of primary anetoderma with lesions present all over the body, including the scalp, palms and soles, the sites that are not known to be involved in this condition.

9.
Am J Physiol Lung Cell Mol Physiol ; 308(5): L464-78, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539853

RESUMO

Elastin plays a pivotal role in lung development. We therefore queried if elastin haploinsufficient newborn mice (Eln(+/-)) would exhibit abnormal lung structure and function related to modified extracellular matrix (ECM) composition. Because mechanical ventilation (MV) has been linked to dysregulated elastic fiber formation in the newborn lung, we also asked if elastin haploinsufficiency would accentuate lung growth arrest seen after prolonged MV of neonatal mice. We studied 5-day-old wild-type (Eln(+/+)) and Eln(+/-) littermates at baseline and after MV with air for 8-24 h. Lungs of unventilated Eln(+/-) mice contained ∼50% less elastin and ∼100% more collagen-1 and lysyl oxidase compared with Eln(+/+) pups. Eln(+/-) lungs contained fewer capillaries than Eln(+/+) lungs, without discernible differences in alveolar structure. In response to MV, lung tropoelastin and elastase activity increased in Eln(+/+) neonates, whereas tropoelastin decreased and elastase activity was unchanged in Eln(+/-) mice. Fibrillin-1 protein increased in lungs of both groups during MV, more in Eln(+/-) than in Eln(+/+) pups. In both groups, MV caused capillary loss, with larger and fewer alveoli compared with unventilated controls. Respiratory system elastance, which was less in unventilated Eln(+/-) compared with Eln(+/+) mice, was similar in both groups after MV. These results suggest that elastin haploinsufficiency adversely impacts pulmonary angiogenesis and that MV dysregulates elastic fiber integrity, with further loss of lung capillaries, lung growth arrest, and impaired respiratory function in both Eln(+/+) and Eln(+/-) mice. Paucity of lung capillaries in Eln(+/-) newborns might help explain subsequent development of pulmonary hypertension previously reported in adult Eln(+/-) mice.


Assuntos
Elastina/metabolismo , Matriz Extracelular/metabolismo , Haploinsuficiência , Pulmão/patologia , Respiração Artificial , Remodelação Vascular , Animais , Animais Recém-Nascidos , Antígenos CD/metabolismo , Apoptose , Caderinas/metabolismo , Feminino , Immunoblotting , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Pulmão/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/patologia , Microvasos/fisiopatologia , Elastase Pancreática/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/fisiopatologia
10.
Am J Physiol Lung Cell Mol Physiol ; 303(3): L215-27, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22683569

RESUMO

Mechanical ventilation (MV) with O(2)-rich gas (MV-O(2)) offers life-saving treatment for newborn infants with respiratory failure, but it also can promote lung injury, which in neonates translates to defective alveolar formation and disordered lung elastin, a key determinant of lung growth and repair. Prior studies in preterm sheep and neonatal mice showed that MV-O(2) stimulated lung elastase activity, causing degradation and remodeling of matrix elastin. These changes yielded an inflammatory response, with TGF-ß activation, scattered elastic fibers, and increased apoptosis, culminating in defective alveolar septation and arrested lung growth. To see whether sustained inhibition of elastase activity would prevent these adverse pulmonary effects of MV-O(2), we did studies comparing wild-type (WT) and mutant neonatal mice genetically modified to express in their vascular endothelium the human serine elastase inhibitor elafin (Eexp). Five-day-old WT and Eexp mice received MV with 40% O(2) (MV-O(2)) for 24-36 h. WT and Eexp controls breathed 40% O(2) without MV. MV-O(2) increased lung elastase and MMP-9 activity, resulting in elastin degradation (urine desmosine doubled), TGF-ß activation (pSmad-2 increased 6-fold), apoptosis (cleaved-caspase-3 increased 10-fold), and inflammation (NF-κB activation, influx of neutrophils and monocytes) in lungs of WT vs. unventilated controls. These changes were blocked or blunted during MV-O(2) of Eexp mice. Scattered lung elastin and emphysematous alveoli observed in WT mice after 36 h of MV-O(2) were attenuated in Eexp mice. Both WT and Eexp mice showed defective VEGF signaling (decreased lung VEGF-R2 protein) and loss of pulmonary microvessels after lengthy MV-O(2), suggesting that elafin's beneficial effects during MV-O(2) derived primarily from preserving matrix elastin and suppressing lung inflammation, thereby enabling alveolar formation during MV-O(2). These results suggest that degradation and remodeling of lung elastin can contribute to defective lung growth in response to MV-O(2) and might be targeted therapeutically to prevent ventilator-induced neonatal lung injury.


Assuntos
Elafina/fisiologia , Elastase Pancreática/antagonistas & inibidores , Pneumonia/genética , Pneumonia/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Animais , Animais Recém-Nascidos , Apoptose , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Feminino , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Monócitos/citologia , Monócitos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Oxigênio/metabolismo , Elastase Pancreática/metabolismo , Alvéolos Pulmonares/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Respiração Artificial , Insuficiência Respiratória/prevenção & controle , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
Am J Respir Crit Care Med ; 184(5): 537-46, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21562133

RESUMO

RATIONALE: Mechanical ventilation with O2-rich gas (MV-O2) offers life-saving treatment for respiratory failure, but also promotes lung injury. We previously reported that MV-O2 of newborn mice increased lung elastase activity, causing elastin degradation and redistribution of elastic fibers from septal tips to alveolar walls. These changes were associated with transforming growth factor (TGF)-ß activation and increased apoptosis leading to defective alveolarization and lung growth arrest, as seen in neonatal chronic lung disease. OBJECTIVES: To determine if intratracheal treatment of newborn mice with the serine elastase inhibitor elafin would prevent MV-O2-induced lung elastin degradation and the ensuing cascade of events causing lung growth arrest. METHODS: Five-day-old mice were treated via tracheotomy with recombinant human elafin or vehicle (lactated-Ringer solution), followed by MV with 40% O2 for 8-24 hours; control animals breathed 40% O2 without MV. At study's end, lungs were harvested to assess key variables noted below. MEASUREMENTS AND MAIN RESULTS: MV-O2 of vehicle-treated pups increased lung elastase and matrix metalloproteinase-9 activity when compared with unventilated control animals, causing elastin degradation (urine desmosine doubled), TGF-ß activation (pSmad-2 tripled), and apoptosis (cleaved-caspase-3 increased 10-fold). Quantitative lung histology showed larger and fewer alveoli, greater inflammation, and scattered elastic fibers. Elafin blocked these MV-O2-induced changes. CONCLUSIONS: Intratracheal elafin, by blocking lung protease activity, prevented MV-O2-induced elastin degradation, TGF-ß activation, apoptosis, and dispersion of matrix elastin, and attenuated lung structural abnormalities noted in vehicle-treated mice after 24 hours of MV-O2. These findings suggest that elastin breakdown contributes to defective lung growth in response to MV-O2 and might be targeted therapeutically to prevent MV-O2-induced lung injury.


Assuntos
Elafina/farmacologia , Pulmão/crescimento & desenvolvimento , Organogênese/efeitos dos fármacos , Elastase Pancreática/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Respiração Artificial , Insuficiência Respiratória/terapia , Animais , Animais Recém-Nascidos , Apoptose , Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pulmão/enzimologia , Camundongos , Elastase Pancreática/metabolismo , Insuficiência Respiratória/enzimologia , Insuficiência Respiratória/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA