Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 22, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229097

RESUMO

BACKGROUND: Chronic carriage of asymptomatic low-density Plasmodium falciparum parasitaemia in the dry season may support maintenance of acquired immunity that protects against clinical malaria. However, the relationship between chronic low-density infections and subsequent risk of clinical malaria episodes remains unclear. METHODS: In a 2-years study (December 2014 to December 2016) in eastern Gambia, nine cross-sectional surveys using molecular parasite detection were performed in the dry and wet season. During the 2016 malaria transmission season, passive case detection identified episodes of clinical malaria. RESULTS: Among the 5256 samples collected, 444 (8.4%) were positive for P. falciparum. A multivariate model identified village of residence, male sex, age ≥ 5 years old, anaemia, and fever as independent factors associated with P. falciparum parasite carriage. Infections did not cluster over time within the same households or recurred among neighbouring households. Asymptomatic parasite carriage at the end of dry season was associated with a higher risk of infection (Hazard Ratio, HR = 3.0, p < 0.0001) and clinical malaria (HR = 1.561, p = 0.057) during the following transmission season. Age and village of residence were additional predictors of infection and clinical malaria during the transmission season. CONCLUSION: Chronic parasite carriage during the dry season is associated with an increased risk of malaria infection and clinical malaria. It is unclear whether this is due to environmental exposure or to other factors.


Assuntos
Malária Falciparum , Malária , Masculino , Humanos , Pré-Escolar , Plasmodium falciparum , Estações do Ano , Gâmbia/epidemiologia , Estudos Transversais , Malária Falciparum/diagnóstico , Prevalência
2.
Malar J ; 21(1): 383, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522733

RESUMO

BACKGROUND: Genetic diversity of malaria parasites can inform the intensity of transmission and poses a major threat to malaria control and elimination interventions. Characterization of the genetic diversity would provide essential information about the ongoing control efforts. This study aimed to explore allelic polymorphism of merozoite surface protein 1 (msp1) and merozoite surface protein 2 (msp2) to determine the genetic diversity and multiplicity of Plasmodium falciparum infections circulating in high and low transmission sites in western Ethiopia. METHODS: Parasite genomic DNA was extracted from a total of 225 dried blood spots collected from confirmed uncomplicated P. falciparum malaria-infected patients in western Ethiopia. Of these, 72.4% (163/225) and 27.6% (62/225) of the samples were collected in high and low transmission areas, respectively. Polymorphic msp1 and msp2 genes were used to explore the genetic diversity and multiplicity of falciparum malaria infections. Genotyping of msp1 was successful in 86.5% (141/163) and 88.7% (55/62) samples collected from high and low transmission areas, respectively. Genotyping of msp2 was carried out among 85.3% (139/163) and 96.8% (60/62) of the samples collected in high and low transmission sites, respectively. Plasmodium falciparum msp1 and msp2 genes were amplified by nested PCR and the PCR products were analysed by QIAxcel ScreenGel Software. A P-value of less or equal to 0.05 was considered significant. RESULTS: High prevalence of falciparum malaria was identified in children less than 15 years as compared with those ≥ 15 years old (AOR = 2.438, P = 0.005). The three allelic families of msp1 (K1, MAD20, and RO33) and the two allelic families of msp2 (FC27 and 3D7), were observed in samples collected in high and low transmission areas. However, MAD 20 and FC 27 alleles were the predominant allelic families in both settings. Plasmodium falciparum isolates circulating in western Ethiopia had low genetic diversity and mean MOI. No difference in mean MOI between high transmission sites (mean MOI 1.104) compared with low transmission area (mean MOI 1.08) (p > 0.05). The expected heterozygosity of msp1 was slightly higher in isolates collected from high transmission sites (He = 0.17) than in those isolates from low transmission (He = 0.12). However, the heterozygosity of msp2 was not different in both settings (Pfmsp2: 0.04 in high transmission; pfmsp2: 0.03 in low transmission). CONCLUSION: Plasmodium falciparum from clinical malaria cases in western Ethiopia has low genetic diversity and multiplicity of infection irrespective of the intensity of transmission at the site of sampling. These may be signaling the effectiveness of malaria control strategies in Ethiopia; although further studies are required to determine how specific intervention strategies and other parameters that drive the pattern.


Assuntos
Malária Falciparum , Proteína 1 de Superfície de Merozoito , Criança , Masculino , Humanos , Adolescente , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Antígenos de Protozoários/genética , Etiópia/epidemiologia , Proteínas de Protozoários/genética , Variação Genética , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Genótipo
3.
Antimicrob Agents Chemother ; 66(9): e0000222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35993723

RESUMO

The emergence of artemisinin-resistant parasites in Africa has had a devastating impact, causing most malaria cases and related deaths reported on the continent. In Ethiopia, artemether-lumefantrine (AL) is the first-line drug for the treatment of uncomplicated falciparum malaria. This study is one of the earliest evaluations of artemether-lumefantrine (AL) efficacy in western Ethiopia, 17 years after the introduction of this drug in the study area. This study aimed at assessing PCR- corrected clinical and parasitological responses at 28 days following AL treatment. Sixty uncomplicated falciparum malaria patients were enrolled, treated with standard doses of AL, and monitored for 28 days with clinical and parasitological assessments from September 15 to December 15, 2020. Microscopy was used for patient recruitment and molecular diagnosis of P. falciparum was performed by Var gene acidic terminal sequence (varATS) real-time PCR on dried blood spots collected from each patient from day 0 and on follow-up days 1, 2, 3, 7, 14, 21, and 28. MspI and msp2 genotyping was done to confirm occurrence of recrudescence. Data entry and analysis were done by using the WHO-designed Excel spreadsheet and SPSS version 20 for Windows. A P value of less or equal to 0.05 was considered significant. From a total of 60 patients enrolled in this efficacy study, 10 were lost to follow-up; the results were analyzed for 50 patients. All the patients were fever-free on day 3. The asexual parasite positivity rate on day 3 was zero. However; 60% of the patients were PCR positive on day 3. PCR positivity on day 3 was more common among patients <15 years old as compared with those ≥15 years old (AOR = 6.44, P = 0.027). Only two patients met the case definition of treatment failure. These patients were classified as a late clinical failure as they showed symptoms of malaria and asexual stages of the parasite detected by microscopy on day 14 of their follow-ups. Hence, the Kaplan-Meier analysis of PCR- corrected adequate clinical and parasitological response (ACPR) rate of AL among study participants was 96% (95% CI: 84.9-99). In seven patients, the residual submicroscopic parasitemia persists from day 0 to day 28 of the follow-up. In addition, 16% (8/50) of patients were PCR- and then turned PCR+ after day 7 of the follow-up. AL remains efficacious for the treatment of uncomplicated falciparum malaria in the study area. However, the persistence of PCR-detected residual submicroscopic parasitemia following AL might compromise this treatment and need careful monitoring.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Adolescente , Antimaláricos/uso terapêutico , Artemeter/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Artemisininas/uso terapêutico , Progressão da Doença , Etanolaminas/uso terapêutico , Etiópia , Fluorenos/uso terapêutico , Humanos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Parasitemia/tratamento farmacológico , Plasmodium falciparum/genética , Sudão , Resultado do Tratamento
4.
J Infect Dis ; 226(1): 128-137, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35380684

RESUMO

BACKGROUND: In areas where Plasmodium falciparum malaria is seasonal, a dry season reservoir of blood-stage infection is essential for initiating transmission during the following wet season. METHODS: In The Gambia, a cohort of 42 individuals with quantitative polymerase chain reaction-positive P falciparum infections at the end of the transmission season (December) were followed monthly until the end of the dry season (May) to evaluate infection persistence. The influence of human host and parasitological factors was investigated. RESULTS: A large proportion of individuals infected at the end of the wet season had detectable infections until the end of the dry season (40.0%; 16 of 40). At the start of the dry season, the majority of these persistent infections (82%) had parasite densities >10 p/µL compared to only 5.9% of short-lived infections. Persistent infections (59%) were also more likely to be multiclonal than short-lived infections (5.9%) and were associated with individuals having higher levels of P falciparum-specific antibodies (P = .02). CONCLUSIONS: Asymptomatic persistent infections were multiclonal with higher parasite densities at the beginning of the dry season. Screening and treating asymptomatic infections during the dry season may reduce the human reservoir of malaria responsible for initiating transmission in the wet season.


Assuntos
Malária Falciparum , Plasmodium falciparum , Infecções Assintomáticas , Estudos de Coortes , Gâmbia/epidemiologia , Humanos , Prevalência , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA