Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(8): 1764-1783, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38934117

RESUMO

BACKGROUND: Despite being in an oxygen-rich environment, endothelial cells (ECs) use anaerobic glycolysis (Warburg effect) as the primary metabolic pathway for cellular energy needs. PFKFB (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase)-3 regulates a critical enzymatic checkpoint in glycolysis and has been shown to induce angiogenesis. This study builds on our efforts to determine the metabolic regulation of ischemic angiogenesis and perfusion recovery in the ischemic muscle. METHODS: Hypoxia serum starvation (HSS) was used as an in vitro peripheral artery disease (PAD) model, and hind limb ischemia by femoral artery ligation and resection was used as a preclinical PAD model. RESULTS: Despite increasing PFKFB3-dependent glycolysis, HSS significantly decreased the angiogenic capacity of ischemic ECs. Interestingly, inhibiting PFKFB3 significantly induced the angiogenic capacity of HSS-ECs. Since ischemia induced a significant in PFKFB3 levels in hind limb ischemia muscle versus nonischemic, we wanted to determine whether glucose bioavailability (rather than PFKFB3 expression) in the ischemic muscle is a limiting factor behind impaired angiogenesis. However, treating the ischemic muscle with intramuscular delivery of D-glucose or L-glucose (osmolar control) showed no significant differences in the perfusion recovery, indicating that glucose bioavailability is not a limiting factor to induce ischemic angiogenesis in experimental PAD. Unexpectedly, we found that shRNA-mediated PFKFB3 inhibition in the ischemic muscle resulted in an increased perfusion recovery and higher vascular density compared with control shRNA (consistent with the increased angiogenic capacity of PFKFB3 silenced HSS-ECs). Based on these data, we hypothesized that inhibiting HSS-induced PFKFB3 expression/levels in ischemic ECs activates alternative metabolic pathways that revascularize the ischemic muscle in experimental PAD. A comprehensive glucose metabolic gene qPCR arrays in PFKFB3 silenced HSS-ECs, and PFKFB3-knock-down ischemic muscle versus respective controls identified UGP2 (uridine diphosphate-glucose pyrophosphorylase 2), a regulator of protein glycosylation and glycogen synthesis, is induced upon PFKFB3 inhibition in vitro and in vivo. Antibody-mediated inhibition of UGP2 in the ischemic muscle significantly impaired perfusion recovery versus IgG control. Mechanistically, supplementing uridine diphosphate-glucose, a metabolite of UGP2 activity, significantly induced HSS-EC angiogenic capacity in vitro and enhanced perfusion recovery in vivo by increasing protein glycosylation (but not glycogen synthesis). CONCLUSIONS: Our data present that inhibition of maladaptive PFKFB3-driven glycolysis in HSS-ECs is necessary to promote the UGP2-uridine diphosphate-glucose axis that enhances ischemic angiogenesis and perfusion recovery in experimental PAD.


Assuntos
Modelos Animais de Doenças , Glicólise , Membro Posterior , Isquemia , Músculo Esquelético , Neovascularização Fisiológica , Fosfofrutoquinase-2 , Fluxo Sanguíneo Regional , Animais , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/genética , Isquemia/metabolismo , Isquemia/genética , Isquemia/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Humanos , Doença Arterial Periférica/metabolismo , Doença Arterial Periférica/genética , Doença Arterial Periférica/fisiopatologia , Transdução de Sinais , Glicogênio/metabolismo , Recuperação de Função Fisiológica , Células Endoteliais/metabolismo , Células Endoteliais/enzimologia , Camundongos , Hipóxia Celular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA