Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38998170

RESUMO

The need to identify secondary sources of REEs and their recovery has led to the search for new methods and materials. In this study, a novel type of ion-imprinted adsorption membranes based on modified chitosan was synthesized. Their application for the recovery of chosen REEs from synthetic coal fly ash extracts was analyzed. The examined membranes were analyzed in terms of adsorption kinetics, isotherms, selectivity, reuse, and their separation abilities. The experimental data obtained were analyzed with two applications, namely, REE 2.0 and REE_isotherm. It was found that the adsorption of Nd3+ and Y3+ ions in the obtained membranes took place according to the chemisorption mechanism and was significantly controlled by film diffusion. The binding sites on the adsorbent surface were uniformly distributed; the examined ions showed the features of regular monolayer adsorption; and the adsorbents showed a strong affinity to the REE ions. The high values of Kd (900-1472.8 mL/g) demonstrate their high efficiency in the recovery of REEs. After five subsequent adsorption-desorption processes, approximately 85% of the value of one cycle was reached. The synthesized membranes showed a high rejection of the matrix components (Na, Mg, Ca, Al, Fe, and Si) in the extracts of the coal fly ashes, and the retention ratio for these Nd and Y ions was 90.11% and 80.95%, respectively.

2.
Environ Sci Pollut Res Int ; 30(52): 112922-112942, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37843710

RESUMO

Sulfonamides circulating in the environment lead to disturbances in food chains and local ecosystems, but most importantly contribute to development of resistance genes, which generate problems with multidrug-resistant bacterial infections treatment. In urban areas, sources of sulfonamide distribution in soils have received comparatively less attention in contrast to rural regions, where animal-derived manure, used as a natural fertilizer, is considered the main source. The aim of this study was to determine eight sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfapyridine, sulfathiazole, and sulfisoxazole) in environmental soil samples collected from urbanized regions in Silesian Voivodeship with increased animal activity. These soils were grouped according to the organic carbon content. It was necessary to develop versatile and efficient extraction and determination method to analyze selected sulfonamides in various soil types. The developed LC-MS/MS method for sulfonamides analyzing was validated. The obtained recoveries exceeded 45% for soil with medium organic carbon content and 88% for sample with a very low organic carbon content (arenaceous quartz). The obtained results show the high impact of organic matter on analytes adsorption in soil, which influences recovery. All eight sulfa drugs were determined in environmental samples in the concentration range 1.5-10.5 ng g-1. The transformation products of the analytes were also identified, and 29 transformation products were detected in 24 out of 27 extracts from soil samples.


Assuntos
Solo , Sulfonamidas , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Polônia , Ecossistema , Sulfanilamida , Carbono , Antibacterianos
3.
ACS Appl Mater Interfaces ; 15(16): 19863-19876, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37041124

RESUMO

Dental implants have become a routine, affordable, and highly reliable technology to replace tooth loss. In this regard, titanium and its alloys are the metals of choice for the manufacture of dental implants because they are chemically inert and biocompatible. However, for special cohorts of patients, there is still a need for improvements, specifically to increase the ability of implants to integrate into the bone and gum tissues and to prevent bacterial infections that can subsequently lead to peri-implantitis and implant failures. Therefore, titanium implants require sophisticated approaches to improve their postoperative healing and long-term stability. Such treatments range from sandblasting to calcium phosphate coating, fluoride application, ultraviolet irradiation, and anodization to increase the bioactivity of the surface. Plasma electrolytic oxidation (PEO) has gained popularity as a method for modifying metal surfaces and delivering the desired mechanical and chemical properties. The outcome of PEO treatment depends on the electrochemical parameters and composition of the bath electrolyte. In this study, we investigated how complexing agents affect the PEO surfaces and found that nitrilotriacetic acid (NTA) can be used to develop efficient PEO protocols. The PEO surfaces generated with NTA in combination with sources of calcium and phosphorus were shown to increase the corrosion resistance of the titanium substrate. They also support cell proliferation and reduce bacterial colonization and, hence, lead to a reduction in failed implants and repeated surgeries. Moreover, NTA is an ecologically favorable chelating agent. These features are necessary for the biomedical industry to be able to contribute to the sustainability of the public healthcare system. Therefore, NTA is proposed to be used as a component of the PEO bath electrolyte to obtain bioactive surface layers with properties desired for next-generation dental implants.


Assuntos
Implantes Dentários , Titânio , Humanos , Titânio/química , Ácido Nitrilotriacético , Propriedades de Superfície , Oxirredução , Metais , Ligas , Eletrólitos , Materiais Revestidos Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36499115

RESUMO

New boron carriers with high boron content and targeted cancer-cell delivery are considered the first choice for boron neutron capture therapy (BNCT) for cancer treatment. Previously, we have shown that composites of antisense oligonucleotide and boron clusters are functional nanoparticles for the downregulation of expression of epidermal growth factor receptor (EGFR) and can be loaded into EGFR-overexpressing cancer cells without a transfection factor. In this study, we hypothesize that free cellular uptake is mediated by binding and activation of the EGFR by boron clusters. Proteomic analysis of proteins pulled-down from various EGFR-overexpressing cancer cells using short oligonucleotide probes, conjugated to 1,2-dicarba-closo-dodecaborane (1,2-DCDDB, [C2B10H12]) and [(3,3'-Iron-1,2,1',2'-dicarbollide)-] (FESAN, [Fe(C2B9H11)2]-), evidenced that boron cage binds to EGFR subdomains. Moreover, inductively coupled plasma mass spectrometry (ICP MS) and fluorescence microscopy analyses confirmed that FESANs-highly decorated B-ASOs were efficiently delivered and internalized by EGFR-overexpressing cells. Antisense reduction of EGFR in A431 and U87-MG cells resulted in decreased boron accumulation compared to control cells, indicating that cellular uptake of B-ASOs is related to EGFR-dependent internalization. The data obtained suggest that EGFR-mediated cellular uptake of B-ASO represents a novel strategy for cellular delivery of therapeutic nucleic acids (and possibly other medicines) conjugated to boron clusters.


Assuntos
Terapia por Captura de Nêutron de Boro , Ácidos Nucleicos , Boro/química , Proteômica , Terapia por Captura de Nêutron de Boro/métodos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Compostos de Boro
5.
Membranes (Basel) ; 12(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36557098

RESUMO

The Debiensko plant in Czerwionka-Leszczyny, Poland, producing evaporated salt from the saline mine water, faces increasing operating costs due to its high energy consumption. To improve the performance of the plant, a two-pass nanofiltration with intermediate crystallization of gypsum was proposed as a pretreatment. Based on the results of pilot-scale research, it was found that the removal of most of the calcium, magnesium, and sulfate allows a substantial reduction in the concentration of these components in the concentrated brine, which is then directed to a sodium chloride crystallization evaporator. This makes it possible to increase salt yield from the current 58.8% to 76.1% and indirectly reduce energy consumption from 1350 kWh/t to 1068 kWh/t. At the same time, the volume of the highly saline post-crystallization lyes is decreased by 66%, and a new stream is obtained: a Mg-rich solution, which could be used for magnesium hydroxide recovery.

6.
Materials (Basel) ; 15(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35208050

RESUMO

Reactor-grade niobium steel is used as a construction material for nuclear reactors. In this case, the presence of tantalum, which is characterized by a 20 times higher active cross section for capturing thermal neutrons than the cross section of niobium (181Ta: 21.3 barn), cannot exceed 100 ppm. Analytical methods for quality and new separation method development control need very pure niobium matrices-niobium compounds with a low tantalum content, which are crucial for preparing matrix reference solutions or certified reference materials (CRMs). Therefore, in this paper, a new, efficient method for separating trace amounts of Ta(V) from Nb(V) using extraction chromatography with the use of sorbents impregnated with methyl isobutyl ketone MIBK solvent is proposed. Various types of MIBK-impregnated sorbents were used (AG® 1-X8 Anion Exchange Resin, AMBERLITE™ IRC120 Na Ion Exchange Resin, SERVACEL® Cellulose Anion Exchangers DEAE 52, active carbons of various grain size, carbonized blackcurrant pomace, carbonized chokeberry pomace, bentonite, and polyurethane foam in lumps). The highest tantalum removal efficiency was determined using active coal-based materials (>97%). The separation effectivity of tantalum from niobium was also determined in dynamic studies using a fixed-bed column with MIBK-impregnated active carbon. Solutions of various Nb:Ta weight ratios (1:1, 100:1, 1000:1) were used. The most impressive result was obtaining 70 mL of high purity niobium solution of tantalum content 0.027 ppm (in relation to Nb) with 88.4% yield of niobium from a solution of Nb:Ta, weight ratio 1000:1 (purge factor equaled 35,000). It proves the presented system to be applicable for preparation of pure niobium compounds with very low contents of tantalum.

7.
Int J Mol Sci ; 22(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064412

RESUMO

Epidermal growth factor receptor (EGFR) is one of the most promising molecular targets for anticancer therapy. We used boron clusters as a platform for generation of new materials. For this, functional DNA constructs conjugated with boron clusters (B-ASOs) were developed. These B-ASOs, built from 1,2-dicarba-closo-dodecaborane linked with two anti-EGFR antisense oligonucleotides (ASOs), form with their complementary congeners torus-like nanostructures, as previously shown by atomic force microscope (AFM) and transmission electron cryo-microscopy (cryo-TEM) imaging. In the present work, deepened studies were carried out on B-ASO's properties. In solution, B-ASOs formed four dominant complexes as confirmed by non-denaturing polyacrylamide gel electrophoresis (PAGE). These complexes exhibited increased stability in cell lysate comparing to the non-modified ASO. Fluorescently labeled B-ASOs localized mostly in the cytoplasm and decreased EGFR expression by activating RNase H. Moreover, the B-ASO complexes altered the cancer cell phenotype, decreased cell migration rate, and arrested the cells in the S phase of cell cycle. The 1,2-dicarba-closo-dodecaborane-containing nanostructures did not activate NLRP3 inflammasome in human macrophages. In addition, as shown by inductively coupled plasma mass spectrometry (ICP MS), these nanostructures effectively penetrated the human squamous carcinoma cells (A431), showing their potential applicability as anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Boranos/farmacologia , Regulação Neoplásica da Expressão Gênica , Nanopartículas/química , Oligonucleotídeos Antissenso/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Boranos/síntese química , Boranos/metabolismo , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Movimento Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HeLa , Humanos , Cinética , Células MCF-7 , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Transdução de Sinais
8.
Chemosphere ; 280: 130638, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33932905

RESUMO

The knowledge gaps regarding the degradation of sulfamethoxazole (SMX) in biofilters include the effect of aeration, constant feeding with readily biodegradable organic carbon and the presence of reactive media such as manganese oxides (MnOx). Thus, the goal of this study was to assess the removal of SMX in lab-scale biofilters with various operation variables: aeration, presence of MnOx as an amendment of filtering medium and the presence of readily biodegradable organic carbon (acetate). The sand used in the experiment as a filtering medium was previously exposed to the presence of SMX and acetate, which provided acclimation of the biomass. The removal of SMX was complete (>99%) with the exception of the unaerated columns fed with the influent containing acetate, due to apparent slower rate of SMX degradation. The obtained results suggest that bacteria were able to degrade SMX as a primary substrate and the degradation of this compound was subsequent to the depletion of acetate. The LC-MS/MS analysis of the effluents indicated several biotransformation reactions for SMX: (di)hydroxylation, acetylation, nitrosation, deamonification, S-N bond cleavage and isoxazole-ring cleavage. The relative abundance of transformation products was decreased in the presence of MnOx or acetate. Based on the Microtox assay, only the effluents from the unaerated columns filled with MnOx were classified as non-toxic. The results offer important implications for the design of biofilters for the elimination of SMX, namely that biofilters offer the greatest performance when fed with secondary wastewater and operated as non-aerated systems with a filtering medium containing MnOx.


Assuntos
Sulfametoxazol , Poluentes Químicos da Água , Aclimatação , Cromatografia Líquida , Espectrometria de Massas em Tandem
9.
Materials (Basel) ; 14(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466481

RESUMO

Titanium and its alloys are characterized by high biocompatibility and good corrosion resistance as a result of the ability to form a TiO2 oxide layer. However, based on literature data it can be concluded that titanium degradation products, in the form of titanium particles, metal-protein groups, oxides and ions, may cause allergic, inflammatory reactions and bone resorption. The corrosion process of Ti6Al4V in the human body environment may be intensified by a decreased pH and concentration of chloride compounds. The purpose of this article was to analyze the corrosion resistance of the Ti6Al4V alloy, obtained by the selective laser melting method in a corrosion solution of neutral pH and in a solution simulating peri-implant inflammatory conditions. Additionally, the influence of zinc oxide deposited by the atomic layer deposition method on the improvement of the physicochemical behavior of the Ti6Al4V alloy was analyzed. In order to characterize the ZnO layer, tests of chemical and phase composition as well as surface morphology investigation were performed. As part of the assessment of the physicochemical properties of the uncoated samples and those with the ZnO layer, tests of wetting angle, pitting corrosion and impedance corrosion were carried out. The number of ions released after the potentiodynamic test were measured using the inductively coupled plasma atomic emission spectrometry (ICP-AES) method. It can be concluded that samples after surface modification (with the ZnO layer) were characterized by favorable physicochemical properties and had higher corrosion resistance.

10.
Mater Sci Eng C Mater Biol Appl ; 119: 111607, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321651

RESUMO

Plasma Electrolytic Oxidation (PEO) is as a promising technique to modify metal surfaces by application of oxide ceramic coatings with appropriate physical, chemical and biological characteristics. Therefore, objective of this research was to find the simplest settings, yet able to produce relevant bioactive implant surfaces layers on Ti implants by means of PEO. We show that an electrolyte containing potassium dihydrogen phosphate as a source of P and either calcium hydroxide or calcium formate as a source of Ca in combination with a chelating agent, ethylenediamine tetraacetic acid (EDTA), is suitable for PEO to deliver coatings with desired properties. We determined surface morphology, roughness, wettability, chemical and phase composition of titanium after the PEO process. To investigate biocompatibility and bacterial properties of the PEO oxide coatings we used microbial and cell culture tests. The electrolyte based on Ca(OH)2 and EDTA promotes active crystallization of apatites after PEO processing of the Ti implants. The PEO layers can increase electrochemical corrosion resistance. The PEO can be potentially used for development of bioactive surfaces with increased support of eukaryotic cells while inhibiting attachment and growth of bacteria without use of antibacterial agents.


Assuntos
Implantes Dentários , Titânio , Cálcio , Cerâmica/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Oxirredução , Fósforo , Propriedades de Superfície , Titânio/farmacologia
11.
Int J Nanomedicine ; 15: 7433-7450, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116480

RESUMO

PURPOSE: Salicyl (Sal) - among other oxygen functionalities - multi-walled carbon nanotubes (MWCNTs) and their nanohybrids are investigated as promising contrast agents (CA) in magnetic resonance imaging (MRI) or drug delivery platforms, due to their unique properties. The preliminary results and the literature reports were the motivation to endow high r2 relaxivities, excellent dispersibility in water, and biocompatibility to superparamagnetic MWCNTs nanohybrids. It was hypothesized that these goals could be achieved by, not described in the literature yet, two-stage oxygen functionalization of MWCNTs. RESULTS: Two structurally different MWCNT materials differing in diameters (44 and 12 nm) and the iron content (4.7% and 0.5%) are studied toward the functionalization effect on the T2 relaxometric properties. MWCNT oxidation is typically the first step of functionalization resulting in "first generation" oxygen functional groups (OFGs) on the surface. Until now, the impact of OFGs on the relaxivity of MWCNT was not truly recognized, but this study sheds light on this issue. By follow-up functionalization of oxidized MWCNT with 4-azidosalicylic acid through [2+1] cycloaddition of the corresponding nitrene, "second generation" of oxygen functional groups is grafted onto the nanohybrid, ie, Sal functionality. CONCLUSION: The introduced OFGs are responsible for an almost 30% increase in the relaxivity, which leads to remarkable r2 relaxivity of 951 mM-1s-1 (419 (mg/mL)-1s-1), the unprecedented value reported to date for this class of CAs. Also, the resulting nanohybrids express low cytotoxicity and superb diffusion after subcutaneous injection to a mouse.


Assuntos
Meios de Contraste/química , Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Nanotubos de Carbono/química , Oxigênio/química , Animais , Azidas/química , Reação de Cicloadição , Camundongos Endogâmicos C57BL , Oxirredução , Prótons , Salicilatos/química , Água/química
12.
Materials (Basel) ; 13(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899716

RESUMO

High strength, excellent corrosion resistance, high biocompatibility, osseointegration ability, and low bacteria adhesion are critical properties of metal implants. Additionally, the implant surface plays a critical role as the cell and bacteria host, and the development of a simultaneously antibacterial and biocompatible implant is still a crucial challenge. Copper nanoparticles (CuNPs) could be a promising alternative to silver in antibacterial surface engineering due to low cell toxicity. In our study, we assessed the biocompatibility and antibacterial properties of a PEO (plasma electrolytic oxidation) coating incorporated with CuNPs (Cu nanoparticles). The structural and chemical parameters of the CuNP and PEO coating were studied with TEM/SEM (Transmission Electron Microscopy/Scanning Electron Microscopy), EDX (Energy-Dispersive X-ray Dpectroscopy), and XRD (X-ray Diffraction) methods. Cell toxicity and bacteria adhesion tests were used to prove the surface safety and antibacterial properties. We can conclude that PEO on a ZrNb alloy in Ca-P solution with CuNPs formed a stable ceramic layer incorporated with Cu nanoparticles. The new surface provided better osteoblast adhesion in all time-points compared with the nontreated metal and showed medium grade antibacterial activities. PEO at 450 V provided better antibacterial properties that are recommended for further investigation.

13.
Materials (Basel) ; 13(9)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392747

RESUMO

In this paper, beads-shaped hybrid sorbents composed of pectin and Prussian blue were prepared. Various ratios of pectin and Prussian blue in hybrid sorbents were tested. Obtained sorbents had high and roughly constant sorption capacity in a broad pH range (4-10), in which also the swelling index and stability of sorbents were satisfactory. The preliminary sorption studies proved that almost 100% of cesium removal efficiency may be achieved by using the proper sorbent dose. The sorption capacity of the hybrid sorbent with a 1:1 ratio of pectin to Prussian blue equaled q = 36.5 ± 0.8 mg/g (dose 3 g/L, pH = 6, temp. = 22 ± 1 °C, t = 24 h). The obtained results showed that the prepared hybrid pectin-based sorbents are promising for cesium ions removal.

14.
Materials (Basel) ; 12(22)2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31766225

RESUMO

Plasma electrolytic oxidation (PEO) can provide an ideal surface for osteogenic cell attachment and proliferation with further successful osteointegration. However, the same surface is attractive for bacteria due to similar mechanisms of adhesion in prokaryotic and eukaryotic cells. This issue requires the application of additional surface treatments for effective prevention of postoperative infectious complications. In the present work, ZrNb alloy was treated in a Ca-P solution with Ag nanoparticles (AgNPs) for the development of a new oxide layer that hosted osteogenic cells and prevented bacterial adhesion. For the PEO, 0.5 M Ca(H2PO2)2 solution with 264 mg L-1 of round-shaped AgNPs was used. Scanning electron microscopy with energy-dispersive x-ray and x-ray photoelectron spectroscopy were used for morphology and chemical analysis of the obtained samples; the SBF immersion test, bacteria adhesion test, and osteoblast cell culture were used for biological investigation. PEO in a Ca-P bath with AgNPs provides the formation of a mesoporous oxide layer that supports osteoblast cell adhesion and proliferation. Additionally, the obtained surface with incorporated Ag prevents bacterial adhesion in the first 6 h after immersion in a pathogen suspension, which can be an effective approach to prevent infectious complications after implantation.

15.
Polymers (Basel) ; 11(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30960080

RESUMO

Pectin-guar gum biosorbent was tested for zinc(II) ions removal in column process. Sorption⁻desorption experiments were performed in laboratory and at larger scale. The breakthrough and elution curves were obtained for various conditions. The Bed Depth Service Time model was tested for utility in data estimation. Possibility of sorbent reuse and its lifetime was examined in 20 repeated sorption⁻desorption cycles. Finally, tests were repeated for real wastewater from galvanizing plant, giving satisfactory results. The effectiveness of Zn(II) sorption happened to be dependent on process parameters; tests have proved that it increased with increasing bed height and with decreasing flow rate or grain size. For an initial zinc concentration of 30 mg/L, even 2096 mL of zinc solution could be purified in small scale experiment (2 g of fine grain sorbent and flow rate 60 mL/h) or 5900 L in large-scale (16 kg of large grain sorbent and flow rate 45 L/h). This allowed for 40-fold or 49-fold zinc increases in concentration in one sorption⁻desorption cycle. The most successful results are meant that at least 20 sorption⁻desorption cycles could be performed on one portion of biosorbent without loss of its effectiveness, large-scale tests for real wastewater from galvanizing plant gave satisfactory results, and that the form and mechanical stability of our sorbent is suitable for column usage with flow rates applicable in industry.

16.
Artigo em Inglês | MEDLINE | ID: mdl-29772846

RESUMO

Chromium is an essential microelement in the human body. It exerts an effect on bones by modulating their biochemical parameters: alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP). With considerable accumulation of chromium in the skeleton, the activity of alkaline phosphatase was found to decrease, which affected bone formation rate. The study objective was to analyze chromium content in the knee tissues. Tissues for analysis were obtained during endoprosthesoplasty of the knee joint and included tibia, femur, and meniscus tissues. Samples were collected from 50 patients, including 36 women and 14 men. The analysis was performed using the inductively coupled plasma atomic emission spectroscopy (ICP-AES) method, by means of a Varian 710-ES apparatus. The results revealed no significant differences in the content of chromium in the knee joint tissues between women and men. The highest level of chromium was found in the femoral bone of the knee joint, then in the meniscus, and was lowest in the tibia, although the differences were statistically insignificant. Chromium content increased with age.


Assuntos
Cromo/análise , Articulação do Joelho/química , Oligoelementos/análise , Fatores Etários , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Espectrofotometria Atômica
17.
Molecules ; 23(2)2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473851

RESUMO

The fast and simple method for total chlorine determination in polyglycerols using low resolution inductively coupled plasma mass spectrometry (ICP-MS) without the need for additional equipment and time-consuming sample decomposition was evaluated. Linear calibration curve for 35Cl isotope in the concentration range 20-800 µg/L was observed. Limits of detection and quantification equaled to 15 µg/L and 44 µg/L, respectively. This corresponds to possibility of detection 3 µg/g and determination 9 µg/g of chlorine in polyglycerol using studied conditions (0.5% matrix-polyglycerol samples diluted or dissolved with water to an overall concentration of 0.5%). Matrix effects as well as the effect of chlorine origin have been evaluated. The presence of 0.5% (m/m) of matrix species similar to polyglycerol (polyethylene glycol-PEG) did not influence the chlorine determination for PEGs with average molecular weights (MW) up to 2000 Da. Good precision and accuracy of the chlorine content determination was achieved regardless on its origin (inorganic/organic). High analyte recovery level and low relative standard deviation values were observed for real polyglycerol samples spiked with chloride. Additionally, the Combustion Ion Chromatography System was used as a reference method. The results confirmed high accuracy and precision of the tested method.


Assuntos
Cloro/análise , Cloro/química , Glicerol/análise , Glicerol/química , Espectrometria de Massas , Polímeros/análise , Polímeros/química , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes
18.
Adv Clin Exp Med ; 26(7): 1077-1083, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29211354

RESUMO

BACKGROUND: Iron as a cofactor of enzymes takes part in the synthesis of the bone matrix. Severe deficiency of iron reduces the strength and mineral density of bones, whereas its excess may increase oxidative stress. In this context, it is essential to determine the iron content in knee joint tissues. OBJECTIVES: The study objective was to determine the level of iron in the tissues of the knee joint, i.e., in the femoral bone, tibia and meniscus. MATERIAL AND METHODS: Material for analysis was obtained during endoprosthetic surgery of the knee joint. Within the knee joint, the tibia, femur and meniscus were analyzed. Samples were collected from 50 patients, including 36 women and 14 men. The determination of iron content was performed with the ICP-AES method, using Varian 710-ES. RESULTS: The lowest iron content was in the tibia (27.04 µg/g), then in the meniscus (38.68 µg/g) and the highest in the femur (41.93 µg/g). Statistically significant differences were noted in the content of iron in knee joint tissues. CONCLUSIONS: In patients who underwent endoprosthesoplasty of the knee joint, statistically significant differences were found in the levels of iron in various components of the knee joint. The highest iron content was found in the femoral bone of the knee joint and then in the meniscus, the lowest in the tibia. The differences in iron content in the knee joint between women and men were not statistically significant.


Assuntos
Ferro/análise , Articulação do Joelho/química , Idoso , Feminino , Fêmur/química , Humanos , Masculino , Menisco/química , Caracteres Sexuais , Espectrofotometria Atômica , Tíbia/química
19.
Molecules ; 22(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261140

RESUMO

A new hybrid sorbent in the form of round beads containing modified poly(methyl methacrylate) (PMMA) waste immobilized in pectin and crosslinked with calcium ions was prepared. A previously obtained and characterized powdered poly(methyl methacrylate)-based sorbent was used. Batch and column studies on the new material's sorption-desorption properties were performed. Two kinetic models (pseudo-first- and pseudo-second-order) and three isotherms (Langmuir, Langmuir bisite and Freundlich) were used to describe the results. Breakthrough and elution curves were also obtained. Nitric, hydrochloric, and sulfuric acid of various concentrations were used in the desorption studies. Higher sorption affinity of zinc(II) ions to hybrid sorbent than to pectin alone, reflected by higher values of the Langmuir and Freundlich model parameters, was observed. The maximum sorption capacities, calculated based on the best-fitted models, were 50.2 mg/g (Langmuir bisite) and 42.2 mg/g (Langmuir) for hybrid and only pectin beads, respectively. The stripping of Zn ions using 0.1 M solutions of mineral acids was similarly effective in the case of both sorbents. The mass balance calculated for the column studies showed about 100% recovery of zinc in a sorption-desorption cycle. By applying the hybrid sorbent under the studied conditions it is possible to purify Zn in water to the level permitted by law and concentrate Zn(II) ions by about 60 times.


Assuntos
Microesferas , Pectinas/química , Polimetil Metacrilato/química , Eliminação de Resíduos Líquidos/métodos , Zinco/isolamento & purificação , Adsorção , Cálcio/química , Cátions Bivalentes , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação
20.
Artigo em Inglês | MEDLINE | ID: mdl-29168758

RESUMO

Many elements are responsible for the balance in bone tissue, including those which constitute a substantial proportion of bone mass, i.e., calcium, phosphorus and magnesium, as well as minor elements such as strontium. In addition, toxic elements acquired via occupational and environmental exposure, e.g., Pb, are included in the basic bone tissue composition. The study objective was to determine the content of strontium, lead, calcium, phosphorus, sodium and magnesium in chosen components of the knee joint, i.e., tibia, femur and meniscus. The levels of Sr, Pb, Ca, P, Na and Mg were the highest in the tibia in both men and women, whereas the lowest in the meniscus. It should be noted that the levels of these elements were by far higher in the tibia and femur as compared to the meniscus. In the components of the knee joint, the level of strontium showed the greatest variation. Significant statistical differences were found between men and women only in the content of lead.


Assuntos
Articulação do Joelho/química , Oligoelementos/análise , Idoso , Osso e Ossos/química , Cálcio/análise , Feminino , Fêmur/química , Humanos , Chumbo/análise , Magnésio/análise , Masculino , Pessoa de Meia-Idade , Fósforo/análise , Sódio/análise , Estrôncio/análise , Tíbia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA