Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Magn Reson ; 303: 57-66, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31004985

RESUMO

This contribution addresses the experimental proof of the relaxation coupling of the 7Li (I = 3/2) longitudinal magnetization orders in the solid-state electrolyte Li10GeP2S12 (LGPS). This effect was theoretically described by Korb and Petit in 1988 but has not yet been shown experimentally. In a 2D-T1/spin-alignment echo (SAE) experiment, the inverse Laplace transformation of the spectral component over two time dimensions revealed the asymmetric course of the spin-lattice relaxation following from the coupling of all longitudinal orders. These observations were supported by Multi-quantum-filter experiments and by simulations of the 2D-T1/SAE experiment with a lithium spin system. Since the asymmetric relaxation effects are directly dependent on the velocities and degrees of freedom of ion motion they could be used especially in fast Li-ion conductors as a separation tool for environments with different mobility processes.

2.
J Chem Phys ; 128(5): 052306, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18266423

RESUMO

Single Wall Carbon Nanotubes (SWCNT) prepared by the "super growth" method and arc-grown material were used as templates for peapod preparation with La@C(82). A qualitative change of the electron paramagnetic resonance (EPR) properties of La@C(82) is observed after incorporation into SWNT. The loss of lanthanum hyperfine interaction in combination with the observed increase of EPR susceptibility by two orders of magnitude after peapod preparation when comparing with signals from "empty" tubes is indicative for the generation of itinerant spins by charge and spin transfer from La@C(82) to the tubes. This interpretation is supported by the observation of fast spin dephasing, detected with pulsed EPR techniques.

3.
J Phys Condens Matter ; 20(46): 465215, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-21693854

RESUMO

Spatially resolved (19)F and (7)Li nuclear magnetic resonance (NMR) spin-lattice relaxation rates have been measured in LiF crystals irradiated with 1.44 GeV Xe ions at fluences from 10(10) to 10(12) ions cm(-2). In addition, the F-centre concentration has been measured by optical absorption spectroscopy and the concentration of paramagnetic centres by electron paramagnetic resonance (EPR). Within the ion range, the relaxation rate turns out to increase linearly with the concentration of paramagnetic centres but super-linearly with the F-centre concentration. Beyond the ion range, the relaxation rate is still significantly enhanced compared to non-irradiated LiF.

4.
J Magn Reson ; 156(2): 303-8, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12165266

RESUMO

Endohedral fullerenes N@C(60) and N@C(70) were dissolved in the liquid crystal 4-methoxybenzylidene-4'-n-butylaniline (MBBA) and investigated by electron paramagnetic resonance. In both cases well resolved EPR spectra give proof for molecular orientation in the nematic mesophase. Spectral features are dominated by a nonvanishing zero-field interaction, indicating a deviation from spherical spin density distribution at the encased nitrogen atom. In N@C(70), a maximum order parameter O(33) = 0.18(3), correlated with the long axis of the cage, and a zero-field-splitting parameter D = -2.6(4) MHz were determined. A persistent zero-field splitting is also observed in C(60) via the quartet spin of the encapsulated nitrogen, although no assignment of the director with respect to the molecular frame is possible. The observed line splitting is indicative of pseudo orientation of the rapidly rotating cage in this case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA