Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(2): e2309161121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170748

RESUMO

In neuronal cell types, vesicular exocytosis is governed by the SNARE (soluble NSF attachment receptor) complex consisting of synaptobrevin2, SNAP25, and syntaxin1. These proteins are required for vesicle priming and fusion. We generated an improved SNAP25-based SNARE COmplex Reporter (SCORE2) incorporating mCeruelan3 and Venus and overexpressed it in SNAP25 knockout embryonic mouse chromaffin cells. This construct rescues vesicle fusion with properties indistinguishable from fusion in wild-type cells. Combining electrochemical imaging of individual release events using electrochemical detector arrays with total internal reflection fluorescence resonance energy transfer (TIR-FRET) imaging reveals a rapid FRET increase preceding individual fusion events by 65 ms. The experiments are performed under conditions of a steady-state cycle of docking, priming, and fusion, and the delay suggests that the FRET change reflects tight docking and priming of the vesicle, followed by fusion after ~65 ms. Given the absence of wt SNAP25, SCORE2 allows determination of the number of molecules at fusion sites and the number that changes conformation. The number of SNAP25 molecules changing conformation in the priming step increases with vesicle size and SNAP25 density in the plasma membrane and equals the number of copies present in the vesicle-plasma membrane contact zone. We estimate that in wt cells, 6 to 7 copies of SNAP25 change conformation during the priming step.


Assuntos
Células Cromafins , Proteínas SNARE , Animais , Camundongos , Membrana Celular/metabolismo , Células Cromafins/metabolismo , Exocitose/fisiologia , Fusão de Membrana/fisiologia , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo
3.
Nat Chem Biol ; 17(9): 982-988, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34354262

RESUMO

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided RNA recognition that triggers cleavage and release of a fluorescent reporter molecule, but long reaction times hamper their detection sensitivity and speed. Here, we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 molecules per µl of RNA in 20 min. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA extracted from respiratory swab samples with quantitative reverse transcriptase PCR (qRT-PCR)-derived cycle threshold (Ct) values up to 33, using a compact detector. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables sensitive, direct RNA detection in a format that is amenable to point-of-care infection diagnosis as well as to a wide range of other diagnostic or research applications.


Assuntos
COVID-19/genética , Sistemas CRISPR-Cas/genética , RNA Viral/genética , SARS-CoV-2/genética , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
medRxiv ; 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33791736

RESUMO

Direct, amplification-free detection of RNA has the potential to transform molecular diagnostics by enabling simple on-site analysis of human or environmental samples. CRISPR-Cas nucleases offer programmable RNA-guided recognition of RNA that triggers cleavage and release of a fluorescent reporter molecule1,2, but long reaction times hamper sensitivity and speed when applied to point-of-care testing. Here we show that unrelated CRISPR nucleases can be deployed in tandem to provide both direct RNA sensing and rapid signal generation, thus enabling robust detection of ~30 RNA copies/microliter in 20 minutes. Combining RNA-guided Cas13 and Csm6 with a chemically stabilized activator creates a one-step assay that detected SARS-CoV-2 RNA from nasopharyngeal samples with PCR-derived Ct values up to 29 in microfluidic chips, using a compact imaging system. This Fast Integrated Nuclease Detection In Tandem (FIND-IT) approach enables direct RNA detection in a format amenable to point-of-care infection diagnosis, as well as to a wide range of other diagnostic or research applications.

5.
Nucleic Acids Res ; 49(6): 3546-3556, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33693715

RESUMO

CRISPR-Cas9 is an RNA-guided DNA endonuclease involved in bacterial adaptive immunity and widely repurposed for genome editing in human cells, animals and plants. In bacteria, RNA molecules that guide Cas9's activity derive from foreign DNA fragments that are captured and integrated into the host CRISPR genomic locus by the Cas1-Cas2 CRISPR integrase. How cells generate the specific lengths of DNA required for integrase capture is a central unanswered question of type II-A CRISPR-based adaptive immunity. Here, we show that an integrase supercomplex comprising guide RNA and the proteins Cas1, Cas2, Csn2 and Cas9 generates precisely trimmed 30-base pair DNA molecules required for genome integration. The HNH active site of Cas9 catalyzes exonucleolytic DNA trimming by a mechanism that is independent of the guide RNA sequence. These results show that Cas9 possesses a distinct catalytic capacity for generating immunological memory in prokaryotes.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Integrases/metabolismo , Proteína 9 Associada à CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/metabolismo , Genoma , Domínios Proteicos , RNA/química , RNA/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(24): 13468-13479, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32467162

RESUMO

The functions of nervous and neuroendocrine systems rely on fast and tightly regulated release of neurotransmitters stored in secretory vesicles through SNARE-mediated exocytosis. Few proteins, including tomosyn (STXBP5) and amisyn (STXBP6), were proposed to negatively regulate exocytosis. Little is known about amisyn, a 24-kDa brain-enriched protein with a SNARE motif. We report here that full-length amisyn forms a stable SNARE complex with syntaxin-1 and SNAP-25 through its C-terminal SNARE motif and competes with synaptobrevin-2/VAMP2 for the SNARE-complex assembly. Furthermore, amisyn contains an N-terminal pleckstrin homology domain that mediates its transient association with the plasma membrane of neurosecretory cells by binding to phospholipid PI(4,5)P2 However, unlike synaptrobrevin-2, the SNARE motif of amisyn is not sufficient to account for the role of amisyn in exocytosis: Both the pleckstrin homology domain and the SNARE motif are needed for its inhibitory function. Mechanistically, amisyn interferes with the priming of secretory vesicles and the sizes of releasable vesicle pools, but not vesicle fusion properties. Our biochemical and functional analyses of this vertebrate-specific protein unveil key aspects of negative regulation of exocytosis.


Assuntos
Exocitose , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Células Cromafins/metabolismo , Humanos , Lipossomos/metabolismo , Fusão de Membrana , Células PC12 , Domínios de Homologia à Plecstrina , Ligação Proteica , Ratos , Proteínas SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Vertebrados , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
7.
Sci Adv ; 3(7): e1603208, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28776026

RESUMO

Regulated exocytosis is a process by which neurotransmitters, hormones, and secretory proteins are released from the cell in response to elevated levels of calcium. In cells, secretory vesicles are targeted to the plasma membrane, where they dock, undergo priming, and then fuse with the plasma membrane in response to calcium. The specific roles of essential proteins and how calcium regulates progression through these sequential steps are currently incompletely resolved. We have used purified neuroendocrine dense-core vesicles and artificial membranes to reconstruct in vitro the serial events that mimic SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor)-dependent membrane docking and fusion during exocytosis. Calcium recruits these vesicles to the target membrane aided by the protein CAPS (calcium-dependent activator protein for secretion), whereas synaptotagmin catalyzes calcium-dependent fusion; both processes are dependent on phosphatidylinositol 4,5-bisphosphate. The soluble proteins Munc18 and complexin-1 are necessary to arrest vesicles in a docked state in the absence of calcium, whereas CAPS and/or Munc13 are involved in priming the system for an efficient fusion reaction.


Assuntos
Cálcio/metabolismo , Exocitose , Vesículas Secretórias/metabolismo , Transporte Biológico , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Bicamadas Lipídicas , Fusão de Membrana , Lipídeos de Membrana/metabolismo , Modelos Biológicos
8.
EMBO J ; 36(12): 1788-1802, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28483813

RESUMO

Assembly of the SNARE proteins syntaxin1, SNAP25, and synaptobrevin into a SNARE complex is essential for exocytosis in neurons. For efficient assembly, SNAREs interact with additional proteins but neither the nature of the intermediates nor the sequence of protein assembly is known. Here, we have characterized a ternary complex between syntaxin1, SNAP25, and the SM protein Munc18-1 as a possible acceptor complex for the R-SNARE synaptobrevin. The ternary complex binds synaptobrevin with fast kinetics, resulting in the rapid formation of a fully zippered SNARE complex to which Munc18-1 remains tethered by the N-terminal domain of syntaxin1. Intriguingly, only one of the synaptobrevin truncation mutants (Syb1-65) was able to bind to the syntaxin1:SNAP25:Munc18-1 complex, suggesting either a cooperative zippering mechanism that proceeds bidirectionally or the progressive R-SNARE binding via an SM template. Moreover, the complex is resistant to disassembly by NSF Based on these findings, we consider the ternary complex as a strong candidate for a physiological intermediate in SNARE assembly.


Assuntos
Proteínas Munc18/metabolismo , Multimerização Proteica , Proteínas R-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Animais , Camundongos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA