Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Immunol ; 14: 1275892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901210

RESUMO

Introduction: Primary antibody deficiencies (PAD) are inborn defects of the immune system that result in increased susceptibility to infections. Despite the reduced response to vaccination, PAD patients still benefit from it by reducing the risk of severe infections and complications. SARS-CoV-2 vaccines are recommended in PAD patients, but their immune effects are poorly studied. Here, we analyze virus-specific T-cell responses in PAD patients after booster vaccination against SARS-CoV-2. Patients and methods: The study included 57 adult PAD patients on long-term immunoglobulin replacement therapy (IgRT) diagnosed with X-linked agammaglobulinemia (XLA; n = 4), common variable immunodeficiency (CVID; n = 33), isotype defects or IgG subclass deficiency (n = 6), and unclassified IgG deficiency (n = 14). Of those, 49 patients (86%) received vaccination against SARS-CoV-2 using mRNA vaccine (Pfizer-BioNTech). T-cell responses were assessed at a median of 21 (13 - 30) weeks after the booster dose (mainly the third dose) using commercially available interferon-gamma release assay (IGRA) with recombinant SARS-CoV-2 spike S1 protein. Results: Vaccinated PAD patients showed an increased (3.8-fold, p = 0.004) release of IFN-γ upon S1 stimulation. In this group, we also documented higher serum levels of anti-SARS-CoV-2 IgG (4.1-fold, p = 0.01), although they were not associated with IGRA results. Further subgroup analysis revealed very similar IGRA responses in CVID and unclassified IgG deficiencies that were 2.4-fold increased compared to XLA and 5.4-fold increased compared to patients with isotype defects or IgG subclass deficiencies (e.g., vs. CVID: p = 0.016). As expected, CVID and XLA patients showed decreased serum titers of anti-SARS-CoV-2 antibodies compared to other studied groups (e.g., CVID vs. unclassified IgG deficiency: 4.4-fold, p = 0.006). The results did not depend directly on IgRT mode or dose, number of vaccine doses and time from the last booster dose, and clinical manifestations of PAD. Interestingly, anti-SARS-CoV-2 titers were positively correlated with serum immunoglobulin levels before IgRT (e.g., for IgA: r = 0.45, p<0.001; for IgG: r = 0.34, p = 0.009) and the percentage of peripheral blood NK cells (r = 0.48, p<0.001). Conclusions: Our results documented satisfactory in vitro cellular immune response in PAD patients after booster SARS-CoV-2 vaccination. Therefore, even patients with agammaglobulinemia should benefit from vaccination due to the apparent induction of cell-mediated immunity, which, together with IgRT, grants comprehensive protection against the pathogen.


Assuntos
COVID-19 , Imunodeficiência de Variável Comum , Deficiência de IgG , Doenças da Imunodeficiência Primária , Adulto , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Imunidade Celular , Imunodeficiência de Variável Comum/terapia , Anticorpos Antivirais , Imunoglobulina G
2.
Semin Arthritis Rheum ; 62: 152228, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429138

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a rare connective tissue disorder of unknown etiology characterized by organ fibrosis and microcirculation dysfunction. Emerging evidence suggests that SSc is related to increased oxidative stress, which contributes to further tissue and vascular damage. METHODS: Oxidative stress response in the peripheral blood was assessed in patients with SSc (n = 55) and well-matched controls (n = 44) using real-time monitoring of protein hydroperoxide (HP) formation by the coumarin boronic acid (CBA) assay. We also analyzed the relationship between HP generation and SSc clinics, systemic inflammation, and cellular fibronectin, an emerging biomarker of endothelial damage. RESULTS: SSc was characterized by a significantly faster (2-fold) fluorescent product generation in the CBA assay and higher cumulative HP formation (3-fold) compared to controls (p<0.001, both). The dynamics of HP generation were not associated with the form of the disease (diffuse vs. limited SSc), current immunosuppressive therapy use, presence of abnormal nailfold capillaries, and autoantibody profile. Still, it was enhanced in patients with more severe illness and certain clinical manifestations (i.e., pulmonary hypertension, digital ulcers, and cyclophosphamide treatment) and in smokers (current or past). Higher serum CRP, blood eosinophil count, and cellular fibronectin with lower hemoglobin levels were independent determinants of increased HP formation. CONCLUSIONS: Our data indicate a pro-oxidant imbalance in SSc, likely related to systemic inflammation and endothelial injury. However, extensive prospective studies are needed to verify whether it is also associated with clinical disease progression.


Assuntos
Endotélio , Inflamação , Escleroderma Sistêmico , Humanos , Estresse Oxidativo , Escleroderma Sistêmico/sangue , Microcirculação , Biomarcadores , Endotélio/lesões , Estudos de Casos e Controles , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso
3.
J Asthma Allergy ; 16: 585-595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37284335

RESUMO

Background: Bronchial thermoplasty (BT) is an interventional endoscopic treatment for severe asthma leading to the clinical improvement, but morphologic changes of bronchial wall related to the procedure and predictors of a favorable response to BT remain uncertain. The aim of the study was to validate an endobronchial ultrasound (EBUS) in assessing the effectiveness of BT treatment. Methods: Patients with severe asthma who met the clinical criteria for BT were included. In all patients clinical data, ACT and AQLQ questionnaires, laboratory tests, pulmonary function tests and bronchoscopy with radial probe EBUS and bronchial biopsies were collected. BT was performed in patients with the thickest bronchial wall L2 layer representing ASM. These patients were evaluated before and after 12 months of follow-up. The relationship between baseline parameters and clinical response was explored. Results: Forty patients with severe asthma were enrolled to the study. All 11 patients qualified to BT successfully completed the 3 sessions of bronchoscopy. BT improved asthma control (P=0.006), quality of life (P=0.028) and decreased exacerbation rate (P=0.005). Eight of the 11 patients (72.7%) showed a clinically meaningful improvement. BT also led to a significant decrease in the thicknesses of bronchial wall layers in EBUS (L1 decreased from 0.183 to 0.173 mm, P=0.003; L2 from 0.207 to 0.185 mm, P = 0.003; and L3-5 from 0.969 to 0.886 mm, P=0.003). Median ASM mass decreased by 61.8% (P=0.002). However, there was no association between baseline patient characteristics and the magnitude of clinical improvement after BT. Conclusion: BT was associated with a significant decrease in the thickness of the bronchial wall layers measured by EBUS including L2 layer representing ASM and ASM mass reduction in bronchial biopsy. EBUS can assess bronchial structural changes related to BT; however, it did not predict the favorable clinical response to therapy.

5.
Nat Commun ; 14(1): 2329, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087523

RESUMO

Rhinoviruses and allergens, such as house dust mite are major agents responsible for asthma exacerbations. The influence of pre-existing airway inflammation on the infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is largely unknown. We analyse mechanisms of response to viral infection in experimental in vivo rhinovirus infection in healthy controls and patients with asthma, and in in vitro experiments with house dust mite, rhinovirus and SARS-CoV-2 in human primary airway epithelium. Here, we show that rhinovirus infection in patients with asthma leads to an excessive RIG-I inflammasome activation, which diminishes its accessibility for type I/III interferon responses, leading to their early functional impairment, delayed resolution, prolonged viral clearance and unresolved inflammation in vitro and in vivo. Pre-exposure to house dust mite augments this phenomenon by inflammasome priming and auxiliary inhibition of early type I/III interferon responses. Prior infection with rhinovirus followed by SARS-CoV-2 infection augments RIG-I inflammasome activation and epithelial inflammation. Timely inhibition of the epithelial RIG-I inflammasome may lead to more efficient viral clearance and lower the burden of rhinovirus and SARS-CoV-2 infections.


Assuntos
Fatores de Restrição Antivirais , Asma , COVID-19 , Proteína DEAD-box 58 , Inflamassomos , Rhinovirus , Humanos , Fatores de Restrição Antivirais/genética , Fatores de Restrição Antivirais/metabolismo , Asma/genética , Asma/imunologia , COVID-19/genética , COVID-19/imunologia , Proteína DEAD-box 58/metabolismo , Infecções por Enterovirus/genética , Infecções por Enterovirus/imunologia , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação , Interferon Tipo I , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/imunologia , Rhinovirus/metabolismo , Rhinovirus/patogenicidade , SARS-CoV-2
6.
Biomedicines ; 11(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36830804

RESUMO

In recent years, substantial progress has been made in our understanding of asthma pathomechanisms, especially phenotyping [...].

7.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835202

RESUMO

Asthma heterogeneity complicates the search for targeted treatment against airway inflammation and remodeling. We sought to investigate relations between eosinophilic inflammation, a phenotypic feature frequent in severe asthma, bronchial epithelial transcriptome, and functional and structural measures of airway remodeling. We compared epithelial gene expression, spirometry, airway cross-sectional geometry (computed tomography), reticular basement membrane thickness (histology), and blood and bronchoalveolar lavage (BAL) cytokines of n = 40 moderate to severe eosinophilic (EA) and non-eosinophilic asthma (NEA) patients distinguished by BAL eosinophilia. EA patients showed a similar extent of airway remodeling as NEA but had an increased expression of genes involved in the immune response and inflammation (e.g., KIR3DS1), reactive oxygen species generation (GYS2, ATPIF1), cell activation and proliferation (ANK3), cargo transporting (RAB4B, CPLX2), and tissue remodeling (FBLN1, SOX14, GSN), and a lower expression of genes involved in epithelial integrity (e.g., GJB1) and histone acetylation (SIN3A). Genes co-expressed in EA were involved in antiviral responses (e.g., ATP1B1), cell migration (EPS8L1, STOML3), cell adhesion (RAPH1), epithelial-mesenchymal transition (ASB3), and airway hyperreactivity and remodeling (FBN3, RECK), and several were linked to asthma in genome- (e.g., MRPL14, ASB3) or epigenome-wide association studies (CLC, GPI, SSCRB4, STRN4). Signaling pathways inferred from the co-expression pattern were associated with airway remodeling (e.g., TGF-ß/Smad2/3, E2F/Rb, and Wnt/ß-catenin).


Assuntos
Asma , Eosinofilia Pulmonar , Mucosa Respiratória , Humanos , Remodelação das Vias Aéreas/genética , Asma/genética , Proteínas de Ligação a Calmodulina , Proteínas Ligadas por GPI , Inflamação , Eosinofilia Pulmonar/genética , Fatores de Transcrição SOXB2 , Transcriptoma , Mucosa Respiratória/metabolismo
8.
J Allergy Clin Immunol ; 151(4): 953-965, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36395984

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drugs-exacerbated respiratory disease (N-ERD) is currently classified as a type-2 (T2) immune-mediated disease characterized by asthma, chronic rhinosinusitis, and hypersensitivity to cyclooxygenase-1 inhibitors. OBJECTIVES: The aim of this study was to characterize immunological endotypes of N-ERD based on the gene expression profile in the bronchial epithelium. METHODS: mRNA transcriptome (mRNA-sequencing) was analyzed in bronchial brushings from patients with N-ERD (n = 22), those with nonsteroidal anti-inflammatory drug-tolerant asthma (NTA, n = 21), and control subjects (n = 11). Additionally, lipid and protein mediators were measured in bronchoalveolar lavage fluid (BALF). RESULTS: Initial analysis of the entire asthma group revealed 2 distinct gene expression signatures: "T2-high" with increased expression of T2-related genes (eg, CLCA1, CST1), and "proinflammatory" characterized by the expression of innate immunity (eg, FOSB, EGR3) and IL-17A response genes. These endotypes showed similar prevalence in N-ERD and NTA (eg, T2-high: 33% and 32%, respectively). T2-high asthma was characterized by increased expression of mast cell and eosinophil markers, goblet cell hyperplasia, and elevated LTE4 and PGD2 in BALF. Patients with a proinflammatory endotype showed mainly neutrophilic inflammation and increased innate immunity mediators in BALF. Furthermore, the proinflammatory signature was associated with a more severe course of asthma and marked airway obstruction. These signatures could be recreated in vitro by exposure of bronchial epithelial cells to IL-13 (T2-high) and IL-17A (proinflammatory). CONCLUSIONS: T2-high signature was found only in one-third of patients with N-ERD, which was similar to what was found in patients with NTA. The proinflammatory endotype, which also occurred in N-ERD, suggests a novel mechanism of severe disease developing on a non-T2 background.


Assuntos
Asma , Transtornos Respiratórios , Doenças Respiratórias , Humanos , Transcriptoma , Interleucina-17/genética , Anti-Inflamatórios não Esteroides/efeitos adversos , Asma/genética , Células Epiteliais
10.
Biomedicines ; 10(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35884804

RESUMO

Airway inflammation in asthma is related to increased reactive oxygen species generation, potentially leading to tissue injury and subsequent airway remodeling. We evaluated oxidative stress in peripheral blood from asthmatic subjects (n = 74) and matched controls (n = 65), using recently developed real-time monitoring of the protein hydroperoxide (HP) formation by the coumarin boronic acid (CBA) assay. We also investigated the relation of the systemic oxidative stress response in asthma to disease severity, lung function, airway remodeling indices (lung computed tomography and histology), and blood and bronchoalveolar lavage fluid (BAL) inflammatory biomarkers. We documented enhanced systemic oxidative stress in asthma, reflected by 35% faster and 58% higher cumulative fluorescent product generation in the CBA assay (p < 0.001 for both). The dynamics of HP generation correlated inversely with lung function but not with asthma severity or histological measures of airway remodeling. HP generation was associated positively with inflammatory indices in the blood (e.g., C-reactive protein) and BAL (e.g., interleukin [IL]-6, IL-12p70, and neutrophil count). Bronchial obstruction, thicker airway walls, increased BAL IL-6, and citrullinated histone 3 in systemic circulation independently determined increased HP formation. In conclusion, a real-time CBA assay showed increased systemic HP generation in asthma. In addition, it was associated with inflammatory biomarkers, suggesting that proper disease control can also lead to a decrease in oxidative stress.

11.
J Asthma ; 59(6): 1087-1094, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764254

RESUMO

INTRODUCTION: Airway inflammation in asthma is accompanied by reconstruction of the bronchial wall extracellular matrix that most likely occurs with a contribution of matrix metalloproteinases (MMPs). Recently we have reported that omalizumab may decrease reticular basement membrane (RBM) thickness together with fibronectin deposits in asthmatic airways, although mechanisms involved are unknown. OBJECTIVE: In the present study, we have investigated the impact of omalizumab on MMPs concentrations in bronchoalveolar lavage fluid (BAL) of asthmatic subjects in relation to airway remodeling changes in histology. PATIENTS AND METHODS: The study group consisted of 13 severe allergic asthmatics treated with omalizumab for at least 12 months. In each subject, clinical and laboratory parameters, bronchoscopy with BAL, and endobronchial biopsy were evaluated before and after the biologic therapy. RBM thickness, fibronectin, and collagen deposits in bronchial mucosa specimens were analyzed in histology. The investigations also included BAL cytology and BAL concentrations of MMP-2, -3, and -9. RESULTS: Omalizumab was related to a decrease in all measured MMPs in BAL (p < 0.001, each), although such declines were not observed in each patient. The depletions were associated with a lower asthma exacerbation rate and better asthma control. Interestingly, patients who showed a decline in at least one MMP (n = 10, 77%) were characterized by a higher decrease in the RBM thickness (-1.61 [-2.02 to -0.6] vs. -0.06 [-0.09 to +3.3], p = 0.03). Likewise, individuals with lower concentrations of MMP-9 after omalizumab (n = 7, 58%) had a greater reduction in the RBM layer as compared to those with steady MMP-9 levels (-1.8 [-2.4 to -1.14] vs. -0.13 [-0.6 to -0.06] µm, p = 0.03). Moreover, the latter group also had unfavorable higher collagen I accumulation after biologic (42 [20 to 55] vs. 0 [-10 to 20]%, respectively, p = 0.03). Higher concentrations of MMPs in BAL at baseline were related to the lower systemic steroid dose and better omalizumab response concerning the decline in RBM thickness. CONCLUSION: Our data suggest that omalizumab therapy is associated with decreased BAL MMPs concentration in the subgroup of asthma patients. The decline was linked with a reduction in the RBM thickness what might play a beneficial role in airway remodeling.


Assuntos
Asma , Hipersensibilidade , Remodelação das Vias Aéreas , Asma/tratamento farmacológico , Asma/patologia , Líquido da Lavagem Broncoalveolar , Colágeno/uso terapêutico , Fibronectinas , Humanos , Metaloproteinase 9 da Matriz , Omalizumab/uso terapêutico
12.
Bioorg Chem ; 117: 105409, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749117

RESUMO

Phosphodiesterase (PDE) inhibitors are currently an extensively studied group of compounds that can bring many benefits in the treatment of various inflammatory and fibrotic diseases, including asthma. Herein, we describe a series of novel N'-phenyl- or N'-benzylbutanamide and N'-arylidenebutanehydrazide derivatives of 8-aminopurine-2,6-dione (27-43) and characterized them as prominent pan-PDE inhibitors. Most of the compounds exhibited antioxidant and anti-inflammatory activity in lipopolysaccharide (LPS)-induced murine macrophages RAW264.7. The most active compounds (32-35 and 38) were evaluated in human bronchial epithelial cells (HBECs) derived from asthmatics. To better map the bronchial microenvironment in asthma, HBECs after exposure to selected 8-aminopurine-2,6-dione derivatives were incubated in the presence of two proinflammatory and/or profibrotic factors: transforming growth factor type ß (TGF-ß) and interleukin 13 (IL-13). Compounds 32-35 and 38 significantly reduced both IL-13- and TGF-ß-induced expression of proinflammatory and profibrotic mediators, respectively. Detailed analysis of their inhibition preferences for selected PDEs showed high affinity for isoenzymes important in the pathogenesis of asthma, including PDE1, PDE3, PDE4, PDE7, and PDE8. The presented data confirm that structural modifications within the 7 and 8 positions of the purine-2,6-dione core result in obtaining preferable pan-PDE inhibitors which in turn exert an excellent anti-inflammatory and anti-fibrotic effect in the bronchial epithelial cells derived from asthmatic patients. This dual-acting pan-PDE inhibitors constitute interesting and promising lead structures for further anti-asthmatic agent discovery.


Assuntos
Antiasmáticos/farmacologia , Anti-Inflamatórios/farmacologia , Antifibróticos/farmacologia , Antioxidantes/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Animais , Antiasmáticos/síntese química , Antiasmáticos/química , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Antifibróticos/síntese química , Antifibróticos/química , Antioxidantes/síntese química , Antioxidantes/química , Humanos , Camundongos , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Células RAW 264.7
13.
Int J Mol Sci ; 22(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204767

RESUMO

Increased airway wall thickness and remodeling of bronchial mucosa are characteristic of asthma and may arise from altered integrin signaling on airway cells. Here, we analyzed the expression of ß1-subfamily integrins on blood and airway cells (flow cytometry), inflammatory biomarkers in serum and bronchoalveolar lavage, reticular basement membrane (RBM) thickness and collagen deposits in the mucosa (histology), and airway geometry (CT-imaging) in 92 asthma patients (persistent airflow limitation subtype: n = 47) and 36 controls. Persistent airflow limitation was associated with type-2 inflammation, elevated soluble α2 integrin chain, and changes in the bronchial wall geometry. Both subtypes of asthma showed thicker RBM than control, but collagen deposition and epithelial α1 and α2 integrins staining were similar. Type-I collagen accumulation and RBM thickness were inversely related to the epithelial expression of the α2 integrin chain. Expression of α2ß1 integrin on T-cells and eosinophils was not altered in asthma. Collagen I deposits were, however, more abundant in patients with lower α2ß1 integrin on blood and airway CD8+ T-cells. Thicker airway walls in CT were associated with lower α2 integrin chain on blood CD4+ T-cells and airway eosinophils. Our data suggest that α2ß1 integrin on inflammatory and epithelial cells may protect against airway remodeling advancement in asthma.


Assuntos
Asma/metabolismo , Asma/patologia , Progressão da Doença , Integrina alfa2beta1/metabolismo , Pulmão/patologia , Substâncias Protetoras/metabolismo , Adulto , Idoso , Remodelação das Vias Aéreas , Asma/sangue , Asma/imunologia , Membrana Basal/patologia , Brônquios/diagnóstico por imagem , Brônquios/patologia , Brônquios/fisiopatologia , Lavagem Broncoalveolar , Feminino , Humanos , Inflamação/patologia , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mucosa/patologia , Subunidades Proteicas/metabolismo , Ventilação Pulmonar , Solubilidade , Linfócitos T/metabolismo , Tomografia Computadorizada por Raios X
14.
Clin Transl Med ; 11(6): e427, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185416

RESUMO

Rhinovirus (RV) infections are associated with asthma exacerbations. MicroRNA-146a and microRNA-146b (miR-146a/b) are anti-inflammatory miRNAs that suppress signaling through the nuclear factor kappa B (NF-κB) pathway and inhibit pro-inflammatory chemokine production in primary human bronchial epithelial cells (HBECs). In the current study, we aimed to explore whether miR-146a/b could regulate cellular responses to RVs in HBECs and airways during RV-induced asthma exacerbation. We demonstrated that expression of miR-146a/b and pro-inflammatory chemokines was increased in HBECs and mouse airways during RV infection. However, transfection with cell-penetrating peptide (CPP)-miR-146a nanocomplexes before infection with RV significantly reduced the expression of the pro-inflammatory chemokines CCL5, IL-8 and CXCL1, increased interferon-λ production, and attenuated infection with the green fluorescent protein (GFP)-expressing RV-A16 in HBECs. Concordantly, compared to wild-type (wt) mice, Mir146a/b-/- mice exhibited more severe airway neutrophilia and increased T helper (Th)1 and Th17 cell infiltration in response to RV-A1b infection and a stronger Th17 response with a less prominent Th2 response in house dust mite extract (HDM)-induced allergic airway inflammation and RV-induced exacerbation models. Interestingly, intranasal administration of CPP-miR-146a nanocomplexes reduced HDM-induced allergic airway inflammation without a significant effect on the Th2/Th1/Th17 balance in wild-type mice. In conclusion, the overexpression of miR-146a has a strong anti-inflammatory effect on RV infection in HBECs and a mouse model of allergic airway inflammation, while a lack of miR-146a/b leads to attenuated type 2 cell responses in mouse models of allergic airway inflammation and RV-induced exacerbation of allergic airway inflammation. Furthermore, our data indicate that the application of CPP-miR-146a nanocomplexes has therapeutic potential for targeting airway inflammation.


Assuntos
Asma/patologia , Hipersensibilidade/patologia , Inflamação/patologia , MicroRNAs/genética , Infecções por Picornaviridae/complicações , Células Th2/imunologia , Adulto , Alérgenos , Animais , Asma/etiologia , Asma/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Masculino , Camundongos , Infecções por Picornaviridae/virologia , Rhinovirus/fisiologia
15.
Sci Rep ; 11(1): 12821, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140575

RESUMO

Human rhinoviruses (HRV) are frequent cause of asthma exacerbations, however the influence of airway inflammation on the severity of viral infection is poorly understood. Here, we investigated how cytokine-induced remodeling of airway epithelium modulates antiviral response. We analyzed gene expression response in in vitro differentiated bronchial epithelium exposed to cytokines and next infected with HRV16. IL-13-induced mucous cell metaplasia (MCM) was associated with impaired ciliogenesis and induction of antiviral genes, resulting in lower susceptibility to HRV. Epithelial-mesenchymal transition caused by TGF-ß was associated with increased virus replication and boosted innate response. Moreover, HRV infection per se caused transient upregulation of MCM markers and growth factors, followed by low-level virus replication and shedding. Our data suggest that the outcome of HRV infection depends on the type of lower airway inflammation and the extent of epithelial damage. Type-2 inflammation (eosinophilic asthma) may induce antiviral state of epithelium and decrease virus sensitivity, while growth factor exposure during epithelial repair may facilitate virus replication and inflammatory response. Additionally, responses to HRV were similar in cells obtained from asthma patients and control subjects, which implicates that antiviral mechanisms are not intrinsically impaired in asthma, but may develop in the presence of uncontrolled airway inflammation.


Assuntos
Asma/complicações , Brônquios/patologia , Brônquios/virologia , Inflamação/complicações , Infecções por Picornaviridae/virologia , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Rhinovirus/fisiologia , Biomarcadores/metabolismo , Estudos de Casos e Controles , Diferenciação Celular , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-13/metabolismo , Metaplasia , Infecções por Picornaviridae/patologia , Rhinovirus/genética , Regulação para Cima
16.
Clin Exp Allergy ; 51(8): 1046-1056, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905579

RESUMO

BACKGROUND: Aspirin desensitization followed by daily aspirin use is an effective treatment for aspirin-exacerbated respiratory disease (AERD). OBJECTIVE: To assess clinical features as well as genetic, immune, cytological and biochemical biomarkers that might predict a positive response to high-dose aspirin therapy in AERD. METHODS: We enrolled 34 AERD patients with severe asthma who underwent aspirin desensitization followed by 52-week aspirin treatment (650 mg/d). At baseline and at 52 weeks, clinical assessment was performed; phenotypes based on induced sputum cells were identified; eicosanoid, cytokine and chemokine levels in induced sputum supernatant were determined; and induced sputum expression of 94 genes was assessed. Responders to high-dose aspirin were defined as patients with improvement in 5-item Asthma Control Questionnaire score, 22-item Sino-Nasal Outcome Test (SNOT-22) score and forced expiratory volume in 1 second at 52 weeks. RESULTS: There were 28 responders (82%). Positive baseline predictors of response included female sex (p = .002), higher SNOT-22 score (p = .03), higher blood eosinophil count (p = .01), lower neutrophil percentage in induced sputum (p = .003), higher expression of the hydroxyprostaglandin dehydrogenase gene, HPGD (p = .004) and lower expression of the proteoglycan 2 gene, PRG2 (p = .01). The best prediction model included Asthma Control Test and SNOT-22 scores, blood eosinophils and total serum immunoglobulin E. Responders showed a marked decrease in sputum eosinophils but no changes in eicosanoid levels. CONCLUSIONS AND CLINICAL RELEVANCE: Female sex, high blood eosinophil count, low sputum neutrophil percentage, severe nasal symptoms, high HPGD expression and low PRG2 expression may predict a positive response to long-term high-dose aspirin therapy in patients with AERD.


Assuntos
Asma Induzida por Aspirina/prevenção & controle , Biomarcadores , Dessensibilização Imunológica/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
BMC Mol Cell Biol ; 22(1): 19, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33711932

RESUMO

BACKGROUND: The asthma-related airway wall remodeling is associated i.a. with a damage of bronchial epithelium and subepithelial fibrosis. Functional interactions between human bronchial epithelial cells and human bronchial fibroblasts are known as the epithelial-mesenchymal trophic unit (EMTU) and are necessary for a proper functioning of lung tissue. However, a high concentration of the transforming growth factor-ß1 (TGF-ß1) in the asthmatic bronchi drives the structural disintegrity of epithelium with the epithelial-to-mesenchymal transition (EMT) of the bronchial epithelial cells, and of subepithelial fibrosis with the fibroblast-to-myofibroblast transition (FMT) of the bronchial fibroblasts. Since previous reports indicate different intrinsic properties of the human bronchial epithelial cells and human bronchial fibroblasts which affect their EMT/FMT potential beetween cells derived from asthmatic and non-asthmatic patients, cultured separatelly in vitro, we were interested to see whether corresponding effects could be obtained in a co-culture of the bronchial epithelial cells and bronchial fibroblasts. In this study, we investigate the effects of the TGF-ß1 on the EMT markers of the bronchial epithelial cells cultured in the air-liquid-interface and effectiveness of FMT in the bronchial fibroblast populations in the EMTU models. RESULTS: Our results show that the asthmatic co-cultures are more sensitive to the TGF-ß1 than the non-asthmatic ones, which is associated with a higher potential of the asthmatic bronchial cells for a profibrotic response, analogously to be observed in '2D' cultures. They also indicate a noticeable impact of human bronchial epithelial cells on the TGF-ß1-induced FMT, stronger in the asthmatic bronchial fibroblast populations in comparison to the non-asthmatic ones. Moreover, our results suggest the protective effects of fibroblasts on the structure of the TGF-ß1-exposed mucociliary differentiated bronchial epithelial cells and their EMT potential. CONCLUSIONS: Our data are the first to demonstrate a protective effect of the human bronchial fibroblasts on the properties of the human bronchial epithelial cells, which suggests that intrinsic properties of not only epithelium but also subepithelial fibroblasts affect a proper condition and function of the EMTU in both normal and asthmatic individuals.


Assuntos
Asma/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Fibroblastos/metabolismo , Adulto , Idoso , Brônquios/metabolismo , Estudos de Casos e Controles , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Adulto Jovem
18.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498209

RESUMO

Airway remodeling in asthma is characterized by reticular basement membrane (RBM) thickening, likely related to epithelial structural and functional changes. Gene expression profiling of the airway epithelium might identify genes involved in bronchial structural alterations. We analyzed bronchial wall geometry (computed tomography (CT)), RBM thickness (histology), and the bronchial epithelium transcriptome profile (gene expression array) in moderate to severe persistent (n = 21) vs. no persistent (n = 19) airflow limitation asthmatics. RBM thickness was similar in the two studied subgroups. Among the genes associated with increased RBM thickness, the most essential were those engaged in cell activation, proliferation, and growth (e.g., CDK20, TACC2, ORC5, and NEK5) and inhibiting apoptosis (e.g., higher mRNA expression of RFN34, BIRC3, NAA16, and lower of RNF13, MRPL37, CACNA1G). Additionally, RBM thickness correlated with the expression of genes encoding extracellular matrix (ECM) components (LAMA3, USH2A), involved in ECM remodeling (LTBP1), neovascularization (FGD5, HPRT1), nerve functioning (TPH1, PCDHGC4), oxidative stress adaptation (RIT1, HSP90AB1), epigenetic modifications (OLMALINC, DNMT3A), and the innate immune response (STAP1, OAS2). Cluster analysis revealed that genes linked with RBM thickness were also related to thicker bronchial walls in CT. Our study suggests that the pro-fibrotic profile in the airway epithelial cell transcriptome is associated with a thicker RBM, and thus, may contribute to asthma airway remodeling.


Assuntos
Asma/metabolismo , Membrana Basal/metabolismo , Transcriptoma , Adulto , Apoptose , Asma/genética , Asma/patologia , Membrana Basal/patologia , Brônquios/metabolismo , Brônquios/patologia , Feminino , Fibrose , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo
19.
J Allergy Clin Immunol ; 147(4): 1269-1280, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32810516

RESUMO

BACKGROUND: Nonsteroidal anti-inflammatory drug (NSAID)-exacerbated respiratory disease (N-ERD) asthma is characterized by chronic rhinosinusitis and intolerance of aspirin and other COX1 inhibitors. Clinical data point to a heterogeneity within the N-ERD phenotype. OBJECTIVE: Our aim was to investigate immune mediator profiles in the lower airways of patients with N-ERD. METHODS: Levels of cytokines (determined by using Luminex assay) and eicosanoids (determined by using mass spectrometry) were measured in bronchoalveolar lavage fluid (BALF) from patients with N-ERD (n = 22), patients with NSAID-tolerant asthma (n = 21), and control subjects (n = 11). mRNA expression in BALF cells was quantified by using TaqMan low-density arrays. RESULTS: Lower airway eosinophilia was more frequent in N-ERD (54.5%) than in NSAID-tolerant asthma (9.5% [P = .009]). The type-2 (T2) immune signature of BALF cells was more pronounced in the eosinophilic subphenotype of N-ERD. Similarly, BALF concentrations of periostin and CCL26 were significantly increased in eosinophilic N-ERD and correlated with T2 signature in BALF cells. Multiparameter analysis of BALF mediators of all patients with asthma revealed the presence of 2 immune endotypes: T2-like (with an elevated level of periostin in BALF) and non-T2/proinflammatory (with higher levels of matrix metalloproteinases and inflammatory cytokines). Patients with N-ERD were classified mostly as having the T2 endotype (68%). Changes in eicosanoid profile (eg, increased leukotriene E4 level) were limited to patients with N-ERD with airway eosinophilia. Blood eosinophilia appeared to be a useful predictor of airway T2 signature (area under the curve [AUC] = 0.83); however, surrogate biomarkers had moderate performance in distinguishing eosinophilic N-ERD (for blood eosinophils, AUC = 0.72; for periostin, AUC = 0.75). CONCLUSIONS: Lower airway immune profiles show considerable heterogeneity of N-ERD, with skewing toward T2 response and eosinophilic inflammation. Increased production of leukotriene E4 was restricted to a subgroup of patients with eosinophilia in the lower airway.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Asma/imunologia , Eosinofilia/imunologia , Rinite/imunologia , Sinusite/imunologia , Adulto , Idoso , Aspirina/efeitos adversos , Biomarcadores , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Eosinófilos/imunologia , Feminino , Humanos , Inflamação/imunologia , Leucotrieno E4/imunologia , Masculino , Pessoa de Meia-Idade , Lavagem Nasal , Neutrófilos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA