Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783097

RESUMO

Streptomyces are soil bacteria with complex life cycle. During sporulation Streptomyces linear chromosomes become highly compacted so that the genetic material fits within limited spore volume. The key players in this process are nucleoid-associated proteins (NAPs). Among them, HU (heat unstable) proteins are the most abundant NAPs in the cell and the most conserved in bacteria. HupS, one of the two HU homologues encoded by the Streptomyces genome, is the best-studied spore-associated NAP. In contrast to other HU homologues, HupS contains a long, C-terminal domain that is extremely rich in lysine repeats (LR domain) similar to eukaryotic histone H2B and mycobacterial HupB protein. Here, we have investigated, whether lysine residues in HupS are posttranslationally modified by reversible lysine acetylation. We have confirmed that Streptomyces venezuelae HupS is acetylated in vivo. We showed that HupS binding to DNA in vitro is controlled by the acetylation. Moreover, we identified that CobB1, one of two Sir2 homologues in Streptomyces, controls HupS acetylation levels in vivo. We demonstrate that the elimination of CobB1 increases HupS mobility, reduces chromosome compaction in spores, and affects spores maturation. Thus, our studies indicate that HupS acetylation affects its function by diminishing DNA binding and disturbing chromosome organization.

2.
Microbiol Spectr ; 11(6): e0175223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37966202

RESUMO

IMPORTANCE: The genus of Mycobacterium includes important clinical pathogens (M. tuberculosis). Bacteria of this genus share the unusual features of their cell cycle such as asymmetric polar cell elongation and long generation time. Markedly, control of the mycobacterial cell cycle still remains not fully understood. The main cell growth determinant in mycobacteria is the essential protein DivIVA, which is also involved in cell division. DivIVA activity is controlled by phosphorylation, but the mechanism and significance of this process are unknown. Here, we show how the previously established protein interaction partner of DivIVA in mycobacteria, the segregation protein ParA, affects the DivIVA subcellular distribution. We also demonstrate the role of a newly identified M. smegmatis DivIVA and ParA interaction partner, a protein named PapM, and we establish how their interactions are modulated by phosphorylation. Demonstrating that the tripartite interplay affects the mycobacterial cell cycle contributes to the general understanding of mycobacterial growth regulation.


Assuntos
Mycobacterium smegmatis , Mycobacterium tuberculosis , Mycobacterium smegmatis/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , Ciclo Celular , Peptídeos e Proteínas de Sinalização Intercelular , Mycobacterium tuberculosis/metabolismo
3.
Nucleic Acids Res ; 50(21): 12202-12216, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36420903

RESUMO

Bacterial chromosome topology is controlled by topoisomerases and nucleoid-associated proteins (NAPs). While topoisomerases regulate DNA supercoiling, NAPs introduce bends or coat DNA upon its binding, affecting DNA loop formation. Streptomyces, hyphal, multigenomic bacteria known for producing numerous clinically important compounds, use the highly processive topoisomerase I (TopA) to remove excessive negative DNA supercoils. Elongated vegetative Streptomyces cells contain multiple copies of their linear chromosome, which remain relaxed and relatively evenly distributed. Here, we explored how TopA cooperates with HupA, an HU homologue that is the most abundant Streptomyces NAP. We verified that HupA has an increased affinity for supercoiled DNA in vivo and in vitro. Analysis of mutant strains demonstrated that HupA elimination is detrimental under high DNA supercoiling conditions. The absence of HupA, combined with decreased TopA levels, disrupted chromosome distribution in hyphal cells, eventually inhibiting hyphal growth. We concluded that increased HupA binding to DNA under elevated chromosome supercoiling conditions is critical for the preservation of chromosome organisation.


Assuntos
Streptomyces , Streptomyces/metabolismo , DNA Super-Helicoidal/genética , DNA Topoisomerases Tipo I/metabolismo , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA , DNA/genética , DNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Front Microbiol ; 13: 928139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875543

RESUMO

Most bacteria use the ParABS system to segregate their newly replicated chromosomes. The two protein components of this system from various bacterial species share their biochemical properties: ParB is a CTPase that binds specific centromere-like parS sequences to assemble a nucleoprotein complex, while the ParA ATPase forms a dimer that binds DNA non-specifically and interacts with ParB complexes. The ParA-ParB interaction incites the movement of ParB complexes toward the opposite cell poles. However, apart from their function in chromosome segregation, both ParAB may engage in genus-specific interactions with other protein partners. One such example is the polar-growth controlling protein DivIVA in Actinomycetota, which binds ParA in Mycobacteria while interacts with ParB in Corynebacteria. Here, we used heterologous hosts to investigate whether the interactions between DivIVA and ParA or ParB are maintained across phylogenic classes. Specifically, we examined interactions of proteins from four bacterial species, two belonging to the Gram positive Actinomycetota phylum and two belonging to the Gram-negative Pseudomonadota. We show that while the interactions between ParA and ParB are preserved for closely related orthologs, the interactions with polarly localised protein partners are not conferred by orthologous ParABs. Moreover, we demonstrate that heterologous ParA cannot substitute for endogenous ParA, despite their high sequence similarity. Therefore, we conclude that ParA orthologs are fine-tuned to interact with their partners, especially their interactions with polarly localised proteins are adjusted to particular bacterial species demands.

5.
mSystems ; 6(6): e0114221, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34783581

RESUMO

Bacterial gene expression is controlled at multiple levels, with chromosome supercoiling being one of the most global regulators. Global DNA supercoiling is maintained by the orchestrated action of topoisomerases. In Streptomyces, mycelial soil bacteria with a complex life cycle, topoisomerase I depletion led to elevated chromosome supercoiling, changed expression of a significant fraction of genes, delayed growth, and blocked sporulation. To identify supercoiling-induced sporulation regulators, we searched for Streptomyces coelicolor transposon mutants that were able to restore sporulation despite high chromosome supercoiling. We established that transposon insertion in genes encoding a novel two-component system named SatKR reversed the sporulation blockage resulting from topoisomerase I depletion. Transposition in satKR abolished the transcriptional induction of the genes within the so-called supercoiling-hypersensitive cluster (SHC). Moreover, we found that activated SatR also induced the same set of SHC genes under normal supercoiling conditions. We determined that the expression of genes in this region impacted S. coelicolor growth and sporulation. Interestingly, among the associated products is another two-component system (SitKR), indicating the potential for cascading regulatory effects driven by the SatKR and SitKR two-component systems. Thus, we demonstrated the concerted activity of chromosome supercoiling and a hierarchical two-component signaling system that impacts gene activity governing Streptomyces growth and sporulation. IMPORTANCE Streptomyces microbes, soil bacteria with complex life cycle, are the producers of a broad range of biologically active compounds (e.g., antibiotics). Streptomyces bacteria respond to various environmental signals using a complex transcriptional regulation mechanism. Understanding regulation of their gene expression is crucial for Streptomyces application as industrial organisms. Here, on the basis of the results of extensive transcriptomics analyses, we describe the concerted gene regulation by global DNA supercoiling and novel two-component system. Our data indicate that regulated genes encode growth and sporulation regulators. Thus, we demonstrate that Streptomyces bacteria link the global regulatory strategies to adjust life cycle to unfavorable conditions.

6.
Nat Commun ; 12(1): 5222, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471115

RESUMO

Bacteria of the genus Streptomyces have a linear chromosome, with a core region and two 'arms'. During their complex life cycle, these bacteria develop multi-genomic hyphae that differentiate into chains of exospores that carry a single copy of the genome. Sporulation-associated cell division requires chromosome segregation and compaction. Here, we show that the arms of Streptomyces venezuelae chromosomes are spatially separated at entry to sporulation, but during sporogenic cell division they are closely aligned with the core region. Arm proximity is imposed by segregation protein ParB and condensin SMC. Moreover, the chromosomal terminal regions are organized into distinct domains by the Streptomyces-specific HU-family protein HupS. Thus, as seen in eukaryotes, there is substantial chromosomal remodelling during the Streptomyces life cycle, with the chromosome undergoing rearrangements from an 'open' to a 'closed' conformation.


Assuntos
Cromossomos Bacterianos/fisiologia , Streptomyces/genética , Streptomyces/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular , DNA Bacteriano , Regulação Bacteriana da Expressão Gênica , Hifas/genética
8.
Microb Cell Fact ; 20(1): 99, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985526

RESUMO

BACKGROUND: Identifying the regulatory factors that control transcriptional activity is a major challenge of gene expression studies. Here, we describe the application of a novel approach for in vivo identification of regulatory proteins that may directly or indirectly control the transcription of a promoter of interest in Streptomyces. RESULTS: A method based on the combination of Tn5 minitransposon-driven random mutagenesis and lux reporter genes was applied for the first time for the Streptomyces genus. As a proof of concept, we studied the topA supercoiling-sensitive promoter, whose activity is dependent on unknown regulatory factors. We found that the sco4804 gene product positively influences topA transcription in S. coelicolor, demonstrating SCO4804 as a novel player in the control of chromosome topology in these bacteria. CONCLUSIONS: Our approach allows the identification of novel Streptomyces regulators that may be critical for the regulation of gene expression in these antibiotic-producing bacteria.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Mutagênese Insercional/métodos , Regiões Promotoras Genéticas , Streptomyces/genética , Estudo de Prova de Conceito
9.
FEMS Microbiol Rev ; 44(6): 725-739, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32658291

RESUMO

Chromosomes are dynamic entities, whose organization and structure depend on the concerted activity of DNA-binding proteins and DNA-processing enzymes. In bacteria, chromosome replication, segregation, compaction and transcription are all occurring simultaneously, and to ensure that these processes are appropriately coordinated, all bacteria employ a mix of well-conserved and species-specific proteins. Unusually, Streptomyces bacteria have large, linear chromosomes and life cycle stages that include multigenomic filamentous hyphae and unigenomic spores. Moreover, their prolific secondary metabolism yields a wealth of bioactive natural products. These different life cycle stages are associated with profound changes in nucleoid structure and chromosome compaction, and require distinct repertoires of architectural-and regulatory-proteins. To date, chromosome organization is best understood during Streptomyces sporulation, when chromosome segregation and condensation are most evident, and these processes are coordinated with synchronous rounds of cell division. Advances are, however, now being made in understanding how chromosome organization is achieved in multigenomic hyphal compartments, in defining the functional and regulatory interplay between different architectural elements, and in appreciating the transcriptional control exerted by these 'structural' proteins.


Assuntos
Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Proteínas de Bactérias/metabolismo
10.
Front Microbiol ; 11: 588, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351468

RESUMO

Chromosome segregation is a crucial stage of the cell cycle. In general, proteins involved in this process are DNA-binding proteins, and in most bacteria, ParA and ParB are the main players; however, some bacteria manage this process by employing other proteins, such as condensins. The dynamic interaction between ParA and ParB drives movement and exerts positioning of the chromosomal origin of replication (oriC) within the cell. In addition, both ParA and ParB were shown to interact with the other proteins, including those involved in cell division or cell elongation. The significance of these interactions for the progression of the cell cycle is currently under investigation. Remarkably, DNA binding by ParA and ParB as well as their interactions with protein partners conceivably may be modulated by intra- and extracellular conditions. This notion provokes the question of whether chromosome segregation can be regarded as a regulatory stage of the cell cycle. To address this question, we discuss how environmental conditions affect chromosome segregation and how segregation proteins influence other cell cycle processes.

11.
Microbiology (Reading) ; 166(2): 120-128, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31390324

RESUMO

Topoisomerase I (TopA) is an essential enzyme that is required to remove excess negative supercoils from chromosomal DNA. Actinobacteria encode unusual TopA homologues with a unique C-terminal domain that contains lysine repeats and confers high enzyme processivity. Interestingly, the longest stretch of lysine repeats was identified in TopA from Streptomyces, environmental bacteria that undergo complex differentiation and produce a plethora of secondary metabolites. In this review, we aim to discuss potential advantages of the lysine repeats in Streptomyces TopA. We speculate that the chromosome organization, transcriptional regulation and lifestyle of these species demand a highly processive but also fine-tuneable relaxase. We hypothesize that the unique TopA provides flexible control of chromosomal topology and globally regulates gene expression.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Topoisomerases Tipo I/metabolismo , Streptomyces/enzimologia , Actinobacteria/classificação , Actinobacteria/enzimologia , Actinobacteria/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cromossomos Bacterianos/química , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Regulação Bacteriana da Expressão Gênica , Lisina , Domínios Proteicos , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Streptomyces/metabolismo
12.
Microbiology (Reading) ; 165(12): 1365-1375, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31592764

RESUMO

DNA replication is controlled mostly at the initiation step. In bacteria, replication of the chromosome starts at a single origin of replication called oriC. The initiator protein, DnaA, binds to specific sequences (DnaA boxes) within oriC and assembles into a filament that promotes DNA double helix opening within the DNA unwinding element (DUE). This process has been thoroughly examined in model bacteria, including Escherichia coli and Bacillus subtilis, but we have a relatively limited understanding of chromosomal replication initiation in other species. Here, we reveal new details of DNA replication initiation in Streptomyces, a group of Gram-positive soil bacteria that possesses a long linear (8-10 Mbps) and GC-rich chromosome with a centrally positioned oriC. We used comprehensive in silico, in vitro and in vivo analyses to better characterize the structure of Streptomyces oriC. We identified 14 DnaA-binding motifs and determined the consensus sequence of the DnaA box. Unexpectedly, our in silico analysis using the WebSIDD algorithm revealed the presence of two putative Streptomyces DUEs (DUE1 and DUE2) located very near one another toward the 5' end of the oriC region. In vitro P1 nuclease assay revealed that DNA unwinding occurs at both of the proposed sites, but using an in vivo replication initiation point mapping, we were able to confirm only one of them (DUE2). The previously observed transcriptional activity of the Streptomyces oriC region may help explain the current results. We speculate that transcription itself could modulate oriC activity in Streptomyces by determining whether DNA unwinding occurs at DUE1 or DUE2.


Assuntos
DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Origem de Replicação/genética , Streptomyces/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Cromossomos Bacterianos/genética , Sequência Consenso , Replicação do DNA , DNA Bacteriano/química , DNA Super-Helicoidal/química , Proteínas de Ligação a DNA/metabolismo
13.
Front Microbiol ; 10: 1605, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354687

RESUMO

Negative DNA supercoiling allows chromosome condensation and facilitates DNA unwinding, which is required for the occurrence of DNA transaction processes, i.e., DNA replication, transcription and recombination. In bacteria, changes in chromosome supercoiling impact global gene expression; however, the limited studies on the global transcriptional response have focused mostly on pathogenic species and have reported various fractions of affected genes. Furthermore, the transcriptional response to long-term supercoiling imbalance is still poorly understood. Here, we address the transcriptional response to both novobiocin-induced rapid chromosome relaxation or long-term topological imbalance, both increased and decreased supercoiling, in environmental antibiotic-producing bacteria belonging to the Streptomyces genus. During the Streptomyces complex developmental cycle, multiple copies of GC-rich linear chromosomes present in hyphal cells undergo profound topological changes, from being loosely condensed in vegetative hyphae, to being highly compacted in spores. Moreover, changes in chromosomal supercoiling have been suggested to be associated with the control of antibiotic production and environmental stress response. Remarkably, in S. coelicolor, a model Streptomyces species, topoisomerase I (TopA) is solely responsible for the removal of negative DNA supercoils. Using a S. coelicolor strain in which topA transcription is under the control of an inducible promoter, we identified genes involved in the transcriptional response to long-term supercoiling imbalance. The affected genes are preferentially organized in several clusters, and a supercoiling-hypersensitive cluster (SHC) was found to be located in the core of the S. coelicolor chromosome. The transcripts affected by long-term topological imbalance encompassed genes encoding nucleoid-associated proteins, DNA repair proteins and transcriptional regulators, including multiple developmental regulators. Moreover, using a gyrase inhibitor, we identified those genes that were directly affected by novobiocin, and found this was correlated with increased AT content in their promoter regions. In contrast to the genes affected by long-term supercoiling changes, among the novobiocin-sensitive genes, a significant fraction encoded for proteins associated with membrane transport or secondary metabolite synthesis. Collectively, our results show that long-term supercoiling imbalance globally regulates gene transcription and has the potential to impact development, secondary metabolism and DNA repair, amongst others.

14.
Mol Microbiol ; 111(1): 204-220, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318635

RESUMO

Although mycobacteria are rod shaped and divide by simple binary fission, their cell cycle exhibits unusual features: unequal cell division producing daughter cells that elongate with different velocities, as well as asymmetric chromosome segregation and positioning throughout the cell cycle. As in other bacteria, mycobacterial chromosomes are segregated by pair of proteins, ParA and ParB. ParA is an ATPase that interacts with nucleoprotein ParB complexes - segrosomes and non-specifically binds the nucleoid. Uniquely in mycobacteria, ParA interacts with a polar protein DivIVA (Wag31), responsible for asymmetric cell elongation, however the biological role of this interaction remained unknown. We hypothesised that this interaction plays a critical role in coordinating chromosome segregation with cell elongation. Using a set of ParA mutants, we determined that disruption of ParA-DNA binding enhanced the interaction between ParA and DivIVA, indicating a competition between the nucleoid and DivIVA for ParA binding. Having identified the ParA mutation that disrupts its recruitment to DivIVA, we found that it led to inefficient segrosomes separation and increased the cell elongation rate. Our results suggest that ParA modulates DivIVA activity. Thus, we demonstrate that the ParA-DivIVA interaction facilitates chromosome segregation and modulates cell elongation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Bacteriano/metabolismo , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/enzimologia , Proteínas de Bactérias/genética , Segregação de Cromossomos , Análise Mutacional de DNA , Mycobacterium smegmatis/crescimento & desenvolvimento
15.
Front Microbiol ; 9: 1592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30065714

RESUMO

Amsacrine, which inhibits eukaryotic type II topoisomerase via DNA intercalation and stabilization of the cleavable topoisomerase-DNA complex, promotes DNA damage and eventually cell death. Amsacrine has also been shown to inhibit structurally distinct bacterial type I topoisomerases (TopAs), including mycobacterial TopA, the only and essential topoisomerase I in Mycobacterium tuberculosis. Here, we describe the modifications of an amsacrine sulfonamide moiety that presumably interacts with mycobacterial TopA, which notably increased the enzyme inhibition and drug selectivity in vivo. To analyse the effects of amsacrine and its derivatives treatment on cell cycle, we used time-lapse fluorescence microscopy (TLMM) and fusion of the ß-subunit of DNA polymerase III with enhanced green fluorescence protein (DnaN-EGFP). We determined that treatment with amsacrine and its derivatives increased the number of DnaN-EGFP complexes and/or prolonged the time of chromosome replication and cell cycle notably. The analysis of TopA depletion strain confirmed that lowering TopA level results in similar disturbances of chromosome replication. In summary, since TopA is crucial for mycobacterial cell viability, the compounds targeting the enzyme disturbed the cell cycle and thus may constitute a new class of anti-tuberculosis drugs.

16.
J Bacteriol ; 200(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29531181

RESUMO

The bacterial chromosome undergoes dynamic changes in response to ongoing cellular processes and adaptation to environmental conditions. Among the many proteins involved in maintaining this dynamism, the most abundant is the nucleoid-associated protein (NAP) HU. In mycobacteria, the HU homolog, HupB, possesses an additional C-terminal domain that resembles that of eukaryotic histones H1/H5. Recently, we demonstrated that the highly abundant HupB protein occupies the entirety of the Mycobacterium smegmatis chromosome and that the HupB-binding sites exhibit a bias from the origin (oriC) to the terminus (ter). In this study, we used HupB fused with enhanced green fluorescent protein (EGFP) to perform the first analysis of chromosome dynamics and to track the oriC and replication machinery directly on the chromosome during the mycobacterial cell cycle. We show that the chromosome is located in an off-center position that reflects the unequal division and growth of mycobacterial cells. Moreover, unlike the situation in E. coli, the sister oriC regions of M. smegmatis move asymmetrically along the mycobacterial nucleoid. Interestingly, in this slow-growing organism, the initiation of the next round of replication precedes the physical separation of sister chromosomes. Finally, we show that HupB is involved in the precise timing of replication initiation.IMPORTANCE Although our view of mycobacterial nucleoid organization has evolved considerably over time, we still know little about the dynamics of the mycobacterial nucleoid during the cell cycle. HupB is a highly abundant mycobacterial nucleoid-associated protein (NAP) with an indispensable histone-like tail. It was previously suggested as a potential target for antibiotic therapy against tuberculosis. Here, we fused HupB with enhanced green fluorescent protein (EGFP) to study the dynamics of the mycobacterial chromosome in real time and to monitor the replication process directly on the chromosome. Our results reveal that, unlike the situation in Escherichia coli, the nucleoid of an apically growing mycobacterium is positioned asymmetrically within the cell throughout the cell cycle. We show that HupB is involved in controlling the timing of replication initiation. Since tuberculosis remains a serious health problem, studies concerning mycobacterial cell biology are of great importance.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Mycobacterium smegmatis/genética , Complexo de Reconhecimento de Origem/metabolismo , Proteínas de Bactérias/genética , Ciclo Celular/genética , Divisão Celular/genética , DNA Bacteriano/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde , Mycobacterium smegmatis/crescimento & desenvolvimento , Complexo de Reconhecimento de Origem/genética
17.
mBio ; 8(6)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29114022

RESUMO

In bacteria, chromosomal DNA must be efficiently compacted to fit inside the small cell compartment while remaining available for the proteins involved in replication, segregation, and transcription. Among the nucleoid-associated proteins (NAPs) responsible for maintaining this highly organized and yet dynamic chromosome structure, the HU protein is one of the most conserved and highly abundant. HupB, a homologue of HU, was recently identified in mycobacteria. This intriguing mycobacterial NAP is composed of two domains: an N-terminal domain that resembles bacterial HU, and a long and distinctive C-terminal domain that contains several PAKK/KAAK motifs, which are characteristic of the H1/H5 family of eukaryotic histones. In this study, we analyzed the in vivo binding of HupB on the chromosome scale. By using PALM (photoactivated localization microscopy) and ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing), we observed that the C-terminal domain is indispensable for the association of HupB with the nucleoid. Strikingly, the in vivo binding of HupB displayed a bias from the origin (oriC) to the terminus (ter) of the mycobacterial chromosome (numbers of binding sites decreased toward ter). We hypothesized that this binding mode reflects a role for HupB in organizing newly replicated oriC regions. Thus, HupB may be involved in coordinating replication with chromosome segregation.IMPORTANCE We currently know little about the organization of the mycobacterial chromosome and its dynamics during the cell cycle. Among the mycobacterial nucleoid-associated proteins (NAPs) responsible for chromosome organization and dynamics, HupB is one of the most intriguing. It contains a long and distinctive C-terminal domain that harbors several PAKK/KAAK motifs, which are characteristic of the eukaryotic histone H1/H5 proteins. The HupB protein is also known to be crucial for the survival of tubercle bacilli during infection. Here, we provide in vivo experimental evidence showing that the C-terminal domain of HupB is crucial for its DNA binding. Our results suggest that HupB may be involved in organizing newly replicated regions and could help coordinate chromosome replication with segregation. Given that tuberculosis (TB) remains a serious worldwide health problem (10.4 million new TB cases were diagnosed in 2015, according to WHO) and new multidrug-resistant Mycobacterium tuberculosis strains are continually emerging, further studies of the biological function of HupB are needed to determine if this protein could be a prospect for novel antimicrobial drug development.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Histonas/química , Histonas/metabolismo , Mycobacterium smegmatis/metabolismo , Proteínas de Bactérias/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Histonas/genética , Mycobacterium smegmatis/química , Mycobacterium smegmatis/genética , Origem de Replicação
18.
Nucleic Acids Res ; 45(20): 11908-11924, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981718

RESUMO

Streptomyces topoisomerase I (TopA) exhibits exceptionally high processivity. The enzyme, as other actinobacterial topoisomerases I, differs from its bacterial homologs in its C-terminal domain (CTD). Here, bioinformatics analyses established that the presence of lysine repeats is a characteristic feature of actinobacterial TopA CTDs. Streptomyces TopA contains the longest stretch of lysine repeats, which terminate with acidic amino acids. DNA-binding studies revealed that the lysine repeats stabilized the TopA-DNA complex, while single-molecule experiments showed that their elimination impaired enzyme processivity. Streptomyces coelicolor TopA processivity could not be restored by fusion of its N-terminal domain (NTD) with the Escherichia coli TopA CTD. The hybrid protein could not re-establish the distribution of multiple chromosomal copies in Streptomyces hyphae impaired by TopA depletion. We expected that the highest TopA processivity would be required during the growth of multigenomic sporogenic hyphae, and indeed, the elimination of lysine repeats from TopA disturbed sporulation. We speculate that the interaction of the lysine repeats with DNA allows the stabilization of the enzyme-DNA complex, which is additionally enhanced by acidic C-terminal amino acids. The complex stabilization, which may be particularly important for GC-rich chromosomes, enables high enzyme processivity. The high processivity of TopA allows rapid topological changes in multiple chromosomal copies during Streptomyces sporulation.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA/metabolismo , Lisina/metabolismo , Streptomyces coelicolor/enzimologia , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Biocatálise , Simulação por Computador , DNA/genética , DNA Topoisomerases Tipo I/genética , Cinética , Lisina/genética , Mutação , Ligação Proteica , Esporos Bacterianos/enzimologia , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Streptomyces coelicolor/genética , Streptomyces coelicolor/fisiologia
19.
Mol Microbiol ; 105(3): 453-468, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28517109

RESUMO

Active segregation of bacterial chromosomes usually involves the action of ParB proteins, which bind in proximity of chromosomal origin (oriC) regions forming nucleoprotein complexes - segrosomes. Newly duplicated segrosomes are moved either uni- or bidirectionally by the action of ATPases - ParA proteins. In Mycobacterium smegmatis the oriC region is located in an off-centred position and newly replicated segrosomes are segregated towards cell poles. The elimination of M. smegmatis ParA and/or ParB leads to chromosome segregation defects. Here, we took advantage of microfluidic time-lapse fluorescent microscopy to address the question of ParA and ParB dynamics in M. smegmatis and M. tuberculosis cells. Our results reveal that ParB complexes are segregated in an asymmetrical manner. The rapid movement of segrosomes is dependent on ParA that is transiently associated with the new pole. Remarkably in M. tuberculosis, the movement of the ParB complex is much slower than in M. smegmatis, but segregation as in M. smegmatis lasts approximately 10% of the cell cycle, which suggests a correlation between segregation dynamics and the growth rate. On the basis of our results, we propose a model for the asymmetric action of segregation machinery that reflects unequal division and growth of mycobacterial cells.


Assuntos
Proteínas de Bactérias/metabolismo , Segregação de Cromossomos/fisiologia , Mycobacterium smegmatis/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Divisão Celular , Segregação de Cromossomos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Nucleoproteínas/metabolismo , Origem de Replicação/genética
20.
Sci Rep ; 7: 43836, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28262767

RESUMO

The growth rates of bacteria must be coordinated with major cell cycle events, including chromosome replication. When the doubling time (Td) is shorter than the duration of chromosome replication (C period), a new round of replication begins before the previous round terminates. Thus, newborn cells inherit partially duplicated chromosomes. This phenomenon, which is termed multifork replication, occurs among fast-growing bacteria such as Escherichia coli and Bacillus subtilis. In contrast, it was historically believed that slow-growing bacteria (including mycobacteria) do not reinitiate chromosome replication until the previous round has been completed. Here, we use single-cell time-lapse analyses to reveal that mycobacterial cell populations exhibit heterogeneity in their DNA replication dynamics. In addition to cells with non-overlapping replication rounds, we observed cells in which the next replication round was initiated before completion of the previous replication round. We speculate that this heterogeneity may reflect a relaxation of cell cycle checkpoints, possibly increasing the ability of slow-growing mycobacteria to adapt to environmental conditions.


Assuntos
Cromossomos Bacterianos/genética , Replicação do DNA , DNA Bacteriano/genética , Mycobacterium smegmatis/genética , Divisão Celular/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Mycobacterium smegmatis/citologia , Mycobacterium smegmatis/metabolismo , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA