RESUMO
The 9th German Pharm-Tox Summit (GPTS) and the 90th Annual Meeting of the German Society for Experimental and Clinical Pharmacology and Toxicology (DGPT) took place in Munich from March 13-15, 2024. The event brought together over 700 participants from around the world to discuss cutting-edge developments in the fields of pharmacology and toxicology as well as scientific innovations and novel insights. A key focus of the conference was on the rapidly increasing role of computational toxicology, artificial intelligence (AI), and machine learning (ML) into the field, marking a shift away from traditional methods and allowing the reduction of animal testing as primary tool for toxicological risk assessment. Tools such as Toxometris.ai showcased the potential of AI-based risk assessments for predicting carcinogenicity, offering more ethical and efficient alternatives. Additionally, computer-driven models like computer-aided pattern analysis (C@PA) for drug toxicity prediction were presented, emphasizing the growing role of chem- and bioinformatic applications in computational sciences. Throughout the summit, there was a strong focus on the need for regulatory innovation to support the adoption of these advanced technologies and ensure the safety and sustainability of chemical substances and drugs.
RESUMO
In the past decade, research on innovative business models to manage the risk of chemical substances has sought to provide solutions to achieve the goals of the World Summit on Sustainable Development of 2002, which called for a renewal of the commitment to the sound management of chemicals and of hazardous wastes throughout their life cycle and set the ambitious goal, by 2020, to use and produce chemicals in ways that do not lead to significant adverse effects on human health and the environment. Chemical Leasing is an innovative business model that shows a great potential to become a global model for sustainable development within chemical management. This paper provides a review of the current standings of literature regarding the implementation of Chemical Leasing in the past decade. In doing so, the paper highlights the potential of this business model to serve as an approach for dematerializing production processes and managing the risks of chemicals at all levels. More in detail, it provides an outline of how Chemical Leasing has supported the alignment and implementation of the objectives of chemicals policy-makers and industry regarding the production and use of chemicals and analyses to what extent Chemical Leasing contributes to the implementation of a number of voluntary global initiatives, such as Cleaner Production, Sustainable Chemistry and Corporate Social Responsibility. This paper provides a systematic analysis of the gaps identified in literature regarding the implementation of Chemical Leasing business models. Based on this analysis, specific aspects in the field of Chemical Leasing are recommended to be further elaborated in order to increase the understanding and applicability of the business model.
Assuntos
Conservação dos Recursos Naturais/economia , Monitoramento Ambiental/métodos , Poluentes Ambientais/química , Indústria Química/economia , Indústria Química/normas , Resíduos Perigosos , Humanos , Modelos TeóricosRESUMO
Chemical Leasing is a service-oriented business model that shifts the focus from increasing sales volume of chemicals towards a value-added approach. Recent pilot projects have shown the economic benefits of introducing Chemical Leasing business models in a broad range of sectors. A decade after its introduction, the promotion of Chemical Leasing is still predominantly done by the public sector and international organizations. We show in this paper that awareness-raising activities to disseminate information on this innovative business model mainly focus on the economic benefits. We argue that selling Chemical Leasing business models solely on the grounds of economic and ecological considerations falls short of branding it as a corporate social responsibility initiative, which, for this paper, is defined as a stakeholder-oriented concept that extends beyond the organization's boundaries and is driven by an ethical understanding of the organization's responsibility for the impact of its business activities. For the analysis of Chemical Leasing business models, we introduce two case studies from the water purification and metal degreasing fields, focusing on employees and local communities as two specific stakeholder groups of the company introducing Chemical Leasing. The paper seeks to demonstrate that Chemical Leasing business models can be branded as a corporate social responsibility initiative by outlining the vast potential of Chemical Leasing to improve occupational health and safety and to strengthen the ability of companies to protect the environment from the adverse effects of the chemicals they apply.
Assuntos
Indústria Química/economia , Indústria Química/ética , Comércio/economia , Comércio/ética , Conservação dos Recursos Naturais/métodos , Aluguel de Propriedade/métodos , Responsabilidade Social , Indústria Química/métodos , Comércio/métodos , Conservação dos Recursos Naturais/economia , Humanos , Disseminação de Informação , Gestão de Riscos/métodosRESUMO
BACKGROUND, AIM AND SCOPE: Chemicals play a vital role in the day-to-day life of industrialised societies. Their use is not restricted to the chemical enterprises per se, but is a crucial part of production processes in a lot of industrial sectors. Traditional instruments of environmental policy (such as bans, restrictions) can only deal with the most hazardous substances. The Johannesburg Implementation Plan of 2002 calls for more sustainable patterns of production and consumption, and sets the year of 2020 as a goal to use chemicals in a way that human health and the environment are not endangered. Political instruments should not only gather more knowledge about the properties of chemicals, but should also stimulate the environmentally sound use of chemicals. Existing business models should therefore be reviewed in relation to this strategic approach to encourage marketing options with respect to the environmental focus. MAIN FEATURES: Business models were examined for their effects on the consumption of chemicals and amount of waste emissions in relation to their economic potential. Different possibilities for cooperation of supplier, user and disposal companies were elaborated and examined with a view to the specific situation in Austria. RESULTS AND DISCUSSION: A range of cooperative models--summarised under the term 'chemical leasing'--was identified, which can contribute to a more efficient use of resources. 12 main possible application areas (cleaning, lubrication, paint stripping and others) have been identified in Austria. If chemical leasing models were applied in these areas, the amounts of chemicals currently used could be reduced by one third (53,000 tonnes per year). Cost reductions of up to 15% can be expected. CONCLUSION: The application of chemical leasing models can contribute considerably to achieving more sustainable and resource-efficient patterns of production. The Austrian Ministry for Environment has therefore decided to subsidise the further practical implementation of these new service-oriented business models. Pilot projects in 4 enterprises, which are supervised by consulting companies, are currently being carried out. RECOMMENDATION AND OUTLOOK: The experiences of the pilot projects will serve as valuable building blocks for the wider use of chemical leasing models. Furthermore, the UNIDO Cleaner Production Centres have expressed their clear interest and will examine the possibility to use chemical leasing as a part of their Cleaner Production Programmes.