Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38338447

RESUMO

Deep eutectic solvents (DESs) have recently gained increased attention for their potential in biotechnological applications. DESs are binary mixtures often consisting of a hydrogen bond acceptor and a hydrogen bond donor, which allows for tailoring their properties for particular applications. If produced from sustainable resources, they can provide a greener alternative to many traditional organic solvents for usage in various applications (e.g., as reaction environment, crystallization agent, or storage medium). To navigate this large design space, it is crucial to comprehend the behavior of biomolecules (e.g., enzymes, proteins, cofactors, and DNA) in DESs and the impact of their individual components. Molecular dynamics (MD) simulations offer a powerful tool for understanding thermodynamic and transport processes at the atomic level and offer insights into their fundamental phenomena, which may not be accessible through experiments. While the experimental investigation of DESs for various biotechnological applications is well progressed, a thorough investigation of biomolecules in DESs via MD simulations has only gained popularity in recent years. Within this work, we aim to provide an overview of the current state of modeling biomolecules with MD simulations in DESs and discuss future directions with a focus for optimizing the molecular simulations and increasing our fundamental knowledge.


Assuntos
Solventes Eutéticos Profundos , Simulação de Dinâmica Molecular , Solventes/química , Ligação de Hidrogênio , Biotecnologia
2.
J Chem Theory Comput ; 17(8): 5322-5341, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34232662

RESUMO

Deep eutectic solvents (DESs) have become popular as environmental-friendly solvents for biocatalysis. Molecular dynamics (MD) simulations offer an in-depth analysis of enzymes in DESs, but their performance depends on the force field chosen. Here, we present a comprehensive validation of three biomolecular force fields (CHARMM, Amber, and OPLS) for simulations of alcohol dehydrogenase (ADH) in DESs composed of choline chloride and glycerol/ethylene glycol with varying water contents. Different properties (e.g., protein structure and flexibility, solvation layer, and H-bonds) were used for validation. For two properties (viscosity and water activity) also experiments were performed. The viscosity was calculated with the periodic perturbation method, whereby its parameter dependency is disclosed. A modification of Amber was identified as the best-performing model for low water contents, whereas CHARMM outperforms the other models at larger water concentrations. An analysis of ADH's structure and interactions with the DESs revealed similar predictions for Amber and CHARMM.


Assuntos
Álcool Desidrogenase/química , Solventes/química , Água/química , Álcool Desidrogenase/metabolismo , Colina/química , Etilenoglicol/química , Glicerol/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Termodinâmica , Viscosidade , Água/metabolismo
3.
J Med Chem ; 64(8): 5171-5184, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33847502

RESUMO

Omeprazole is usually administered under an enteric coating. However, there is a Food and Drug Administration-approved strategy that enables its release in the stomach. When locally absorbed, omeprazole shows a higher efficacy and a cytoprotective effect, whose mechanism was still unknown. Therefore, we aimed to assess the effect of the absorption route on the gastric mucosa. 2D and 3D models of dipalmitoylphosphatidylcholine (DPPC) at different pH values (5.0 and 7.4) were used to mimic different absorption conditions. Several experimental techniques, namely, fluorescence studies, X-ray scattering methodologies, and Langmuir monolayers coupled with microscopy, X-ray diffraction, and infrared spectroscopy techniques, were combined with molecular dynamics simulations. The results showed that electrostatic and hydrophobic interactions between omeprazole and DPPC rearranged the conformational state of DPPC. Omeprazole intercalates among DPPC molecules, promoting domain formation with untilted phospholipids. Hence, the local release of omeprazole enables its action as a phospholipid-like drug, which can reinforce and protect the gastric mucosa.


Assuntos
Composição de Medicamentos , Omeprazol/metabolismo , 1,2-Dipalmitoilfosfatidilcolina/química , Liberação Controlada de Fármacos , Polarização de Fluorescência , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Dinâmica Molecular , Omeprazol/química , Transição de Fase , Espalhamento a Baixo Ângulo , Eletricidade Estática , Difração de Raios X
4.
J Chromatogr A ; 1620: 460940, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32183982

RESUMO

Protein adsorption plays a role in many fields, where in some it is desirable to maximize the amount adsorbed, in others it is important to avoid protein adsorption altogether. Therefore, theoretical methods are needed for a better understanding of the underlying processes and for the prediction of adsorption quantities. In this study, we present a proof-of-concept that the calculation of protein adsorption isotherms by molecular dynamics (MD) simulations is possible using the steric mass action (SMA) theory. Here we are investigating the adsorption of bovine/human serum albumin (BSA/HSA) and hemoglobin (bHb) on Q Sepharose FF. Protein adsorption isotherms were experimentally determined and modeled. Free energy profiles of protein adsorption were calculated by MD simulations to determine the Henry isotherms as a first step. Although each simulation contained only one protein, notably the calculated isotherms are in reasonably good agreement with the experimental isotherms. Hence, we could show that MD data can lead to protein adsorption data in good agreement with experimental data. The results were critically discussed and requirements for future applications are identified.


Assuntos
Proteínas/química , Adsorção , Animais , Bovinos , Hemoglobinas/química , Humanos , Simulação de Dinâmica Molecular , Sefarose , Soroalbumina Bovina/química , Albumina Sérica Humana/química
5.
Chembiochem ; 21(6): 811-817, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31605652

RESUMO

The use of oxidoreductases (EC1) in non-conventional reaction media has been increasingly explored. In particular, deep eutectic solvents (DESs) have emerged as a novel class of solvents. Herein, an in-depth study of bioreduction with an alcohol dehydrogenase (ADH) in the DES glyceline is presented. The activity and stability of ADH in mixtures of glyceline/water with varying water contents were measured. Furthermore, the thermodynamic water activity and viscosity of mixtures of glyceline/water have been determined. For a better understanding of the observations, molecular dynamics simulations were performed to quantify the molecular flexibility, hydration layer, and intraprotein hydrogen bonds of ADH. The behavior of the enzyme in DESs follows the classic dependence of water activity (aW ) in non-conventional media. At low aW values (<0.2), ADH does not show any activity; at higher aW values, the activity was still lower than that in pure water due to the high viscosities of the DES. These findings could be further explained by increased enzyme flexibility with increasing water content.


Assuntos
Álcool Desidrogenase/metabolismo , Modelos Biológicos , Pterocarpanos/metabolismo , Água/metabolismo , Biocatálise , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Pterocarpanos/química , Solventes/química , Solventes/metabolismo , Água/química
6.
Eur J Pharm Biopharm ; 129: 204-214, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29859282

RESUMO

Metronidazole is a imidazole derivative with antibacterial and antiprotozoal activity. Despite its therapeutic efficacy, several studies have been developing new imidazole derivatives with lower toxicity. Considering that drug-membrane interactions are key factors for drugs pharmacokinetic and pharmacodynamic properties, the aim of this work is to provide new insights into the structure-toxicity relationship of metronidazole within phosphatidylcholine membranes. For that purpose, lipid membrane models (liposomes and monolayers) composed of dipalmitoylphosphatidylcholine were used. Experimental techniques (determination of partition coefficients and Langmuir isotherm measurements) were combined with molecular dynamics simulations. Different pHs and lipid phases were evaluated to enable a better extrapolation for in vivo conditions. The partition of metronidazole depends on the pH and on the biphasic system (octanol/water or DPPC/water system). At pH 1.2, metronidazole is hydrophilic. At pH 7.4, metronidazole disturbs the order and the packing of phospholipids. For this toxic effect, the hydroxyl group of the side chain of metronidazole is crucial by interacting with the water embedded in the membrane and with the phosphate group and the apolar chains of phospholipids.


Assuntos
Membrana Celular/efeitos dos fármacos , Imidazóis/química , Lipídeos de Membrana/metabolismo , Metronidazol/toxicidade , Membrana Celular/química , Química Farmacêutica , Desenho de Fármacos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/toxicidade , Lipossomos/química , Lipossomos/metabolismo , Lipídeos de Membrana/química , Membranas Artificiais , Metronidazol/química , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
7.
Eur J Pharm Sci ; 115: 369-380, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29366962

RESUMO

Lipophilicity is a physicochemical property of crucial importance in drug discovery and drug design. Biomimetic models, such as liposomes and micelles, constitute a valuable tool for the assessment of lipophilicity through the determination of partition coefficients (log Kp). However, the lack of standardization hampers the judgment about which model or method has the best and broadest passive drug permeation predictive capacity. This work provides a comparative analysis between the methodologies based on biomimetic models to determine the partition coefficient (log Kp). For that purpose, a set of reference substances preconized by the Organization for Economic Cooperation and Development (OECD) guidelines was used. The biomimetic models employed were liposomes and micelles composed by 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) and hexadecylphosphocholine (HePC), respectively. Both lipids were used as representative phospholipids of natural membranes. The partition coefficients between biomimetic models and aqueous phases were determined by derivative spectroscopy at physiological conditions (37 °C and pH 7.4). The partition coefficients obtained using biomimetic models are quite different and more reliable than the ones obtained using an octanol/water system. Comparing the performance of the two biomimetic models, micelles revealed to be suitable only for substances with high molar absorption coefficient and log Kp > 3, but in general liposomes are the best model for accessing lipophilicity of drugs. Furthermore, a comparison between experimental data and the partition coefficients determined by the computational method COSMOmic is also provided and discussed. As a final summarizing result, a decision tree is provided in order to guide the selection of a tool for assessing the lipophilicity of drugs.


Assuntos
Lipossomos/química , Preparações Farmacêuticas/química , Biomimética/métodos , Dimiristoilfosfatidilcolina/química , Lipídeos/química , Micelas , Octanóis/química , Fosfolipídeos/química , Água/química
8.
J Phys Chem B ; 122(5): 1608-1626, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29287148

RESUMO

Molecular dynamics simulations of native α-, ß-, and γ-cyclodextrin in aqueous solution have been conducted with the goal to investigate the performance of the CHARMM36 force field, the AMBER-compatible q4md-CD force field, and five variants of the GROMOS force field. The properties analyzed are structural parameters derived from X-ray diffraction and NMR experiments as well as hydrogen bonds and hydration patterns, including hydration free enthalpies. Recent revisions of the torsional-angle parameters for carbohydrate systems within the GROMOS family of force fields lead to a significant improvement of the agreement between simulated and experimental NMR data. Therefore, we recommend using the variant 53A6GLYC instead of 53A6 and 56A6CARBO_R or 2016H66 instead of 56A6CARBO to simulate cyclodextrins in solution. The CHARMM36 and q4md-CD force fields show a similar performance as the three recommended GROMOS parameter sets. A significant difference is the more flexible nature of the cyclodextrins modeled with the CHARMM36 and q4md-CD force fields compared to the three recommended GROMOS parameter sets.


Assuntos
Ciclodextrinas/química , Simulação de Dinâmica Molecular , Termodinâmica , Estrutura Molecular , Reprodutibilidade dos Testes , Soluções , Água/química
9.
Prog Lipid Res ; 65: 24-44, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27939295

RESUMO

Lipid membranes work as barriers, which leads to inevitable drug-membrane interactions in vivo. These interactions affect the pharmacokinetic properties of drugs, such as their diffusion, transport, distribution, and accumulation inside the membrane. Furthermore, these interactions also affect their pharmacodynamic properties with respect to both therapeutic and toxic effects. Experimental membrane models have been used to perform in vitro assessment of the effects of drugs on the biophysical properties of membranes by employing different experimental techniques. In in silico studies, molecular dynamics simulations have been used to provide new insights at an atomistic level, which enables the study of properties that are difficult or even impossible to measure experimentally. Each model and technique has its advantages and disadvantages. Hence, combining different models and techniques is necessary for a more reliable study. In this review, the theoretical backgrounds of these (in vitro and in silico) approaches are presented, followed by a discussion of the pharmacokinetic and pharmacodynamic properties of drugs that are related to their interactions with membranes. All approaches are discussed in parallel to present for a better connection between experimental and simulation studies. Finally, an overview of the molecular dynamics simulation studies used for drug-membrane interactions is provided.


Assuntos
Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/química , Animais , Humanos
10.
Anal Bioanal Chem ; 408(27): 7551-7557, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27558100

RESUMO

Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is characterized by a phase separation of non-ionic surfactants dispersed in an aqueous solution when the respective cloud point temperature is exceeded. In this context, the feature article raises the following question: May CPE in future studies serve as a key tool (i) to enrich and extract nanoparticles (NPs) from complex environmental matrices prior to analyses and (ii) to preserve the colloidal status of unstable environmental samples? With respect to engineered NPs, a significant gap between environmental concentrations and size- and element-specific analytical capabilities is still visible. CPE may support efforts to overcome this "concentration gap" via the analyte enrichment. In addition, most environmental colloidal systems are known to be unstable, dynamic, and sensitive to changes of the environmental conditions during sampling and sample preparation. This delivers a so far unsolved "sample preparation dilemma" in the analytical process. The authors are of the opinion that CPE-based methods have the potential to preserve the colloidal status of these instable samples. Focusing on NPs, this feature article aims to support the discussion on the creation of a convention called the "CPE extractable fraction" by connecting current knowledge on CPE mechanisms and on available applications, via the uncertainties visible and modeling approaches available, with potential future benefits from CPE protocols.

11.
J Phys Chem B ; 118(13): 3593-604, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24533791

RESUMO

Up to now, micelles composed of different surfactants (mixed micelles) are rarely studied with molecular methods. This is in contrast to their importance for pharmaceutical or industrial applications, where it is of great interest to predict the partition behavior for a large set of solutes (screening) within mixed micelles. This work is focused on molecular simulations of phase equilibria in mixed surfactant systems, because mixtures of different types of surfactants (nonionic or ionic) in aqueous solution can change the partition behavior of solutes tremendously. The extension of COSMO-RS for anisotropic phases, named COSMOmic, is computationally efficient and can be used as a screening tool for finding adequate surfactant systems for a specific extraction task. However, it needs micellar structures as an input. Therefore, molecular dynamics (MD) simulations of the self-assembly of pure Brij35 (polyethylene glycol dodecyl ether) and mixtures either with CTAB (cetyltrimethyl ammonium bromide) or SDS (sodium dodecyl sulfate) at different concentrations are performed. The micelles from the self-assembly MD simulations are used to predict the partition behavior of various solutes between micelle and bulk water with COSMOmic. In this way, various micelles of different size and composition are investigated and structural influences on partition equilibria of solute molecules like ephedrine, acetone, toluene, coumarin, isovanillin, ferulic acid, vanillic acid, syringic acid, and phenol are analyzed. For the first time, the self-assembly of pure Brij35 and the mixtures of Brij35/CTAB and Brij35/SDS is studied on an atomistic scale. Significant influences of atomic structure and composition of mixed micelles on partition equilibria are elucidated. The findings of this detailed analysis are in good agreement with experimental data and likely to improve the knowledge and understanding of mixed micellar extraction processes and can pave the way for more practical applications in the future.


Assuntos
Micelas , Simulação de Dinâmica Molecular , Cetrimônio , Compostos de Cetrimônio/química , Polietilenoglicóis/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Água/química
12.
Langmuir ; 29(37): 11582-92, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-23941607

RESUMO

Molecular dynamics (MD) simulations of the self-assembly of different ionic surfactants have been performed in order to obtain representative micellar structures. Subsequently, these structures were used to predict the partition behavior of various solutes in these micelles with COSMOmic, an extension of COSMO-RS. This paper includes multiple self-assembled micelles of SDS (sodium dodecyl sulfate, anionic surfactant) and CTAB (cetyltrimethylammoniumbromide, cationic surfactant) at different concentrations. Micellar size, density profiles, and shape (eccentricity) have been investigated. However, the size strongly depends on the functional definition of a micelle. For this reason, we present a method based on the free monomer concentration in aqueous solution as an optimization criterion for the micelle definition. The combination of MD with COSMOmic has the benefit of combining detailed atomistic information from MD with fast calculations of COSMOmic. For the first time the influence of micelle structure on pratition equilibria, predicted with COSMOmic, were investigated. In case of SDS more than 4600 and for CTAB more than 800 single micelles have been studied. The predictions of the partition coefficients with COSMOmic are in good agreement with experimental data. Additionally, the most favorable locations of selected molecules in the micelles as well as probable energy barriers are determined even for complex solutes such as toluene, propanolol, ephedrine, acetone, phenol, lidocaine, syringic acid, coumarin, isovanillin, ferulic acid, and vanillic acid. This method can therefore be applied as a potential screening tool for solutes (e.g., drugs) to find the optimal solute-surfactant combination.

13.
J Comput Chem ; 34(15): 1332-40, 2013 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-23447371

RESUMO

The importance of membrane-water partition coefficients led to the recent extension of the conductor-like screening model for realistic solvation (COSMO-RS) to micelles and biomembranes termed COSMOmic. Compared to COSMO-RS, this new approach needs structural information to account for the anisotropy of colloidal systems. This information can be obtained from molecular dynamics (MD) simulations. In this work, we show that this combination of molecular methods can efficiently be used to predict partition coefficients with good agreement to experimental data and enables screening studies. However, there is a discrepancy between the amount of data generated by MD simulations and the structural information needed for COSMOmic. Therefore, a new scheme is presented to extract data from MD trajectories for COSMOmic calculations. In particular, we show how to calculate the system structure from MD, the influence of lipid conformers, the relation to the COSMOmic layer size, and the water/lipid ratio impact. For a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer, 66 partition coefficients for various solutes were calculated. Further, 52 partition coefficients for a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer system were calculated. All these calculations were compared to experimental data.


Assuntos
Dimiristoilfosfatidilcolina/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Água/química
14.
Langmuir ; 29(11): 3527-37, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23398189

RESUMO

Liposomes and micelles find various applications as potential solubilizers in extraction processes or in drug delivery systems. Thermodynamic and transport processes governing the interactions of different kinds of solutes in liposomes or micelles can be analyzed regarding the free energy profiles of the solutes in the system. However, free energy profiles in heterogeneous systems such as micelles are experimentally almost not accessible. Therefore, the development of predictive methods is desirable. Molecular dynamics (MD) simulations reliably simulate the structure and dynamics of lipid membranes and micelles, whereas COSMO-RS accurately reproduces solvation free energies in different solvents. For the first time, free energy profiles in micellar systems, as well as mixed lipid bilayers, are investigated, taking advantage of both methods: MD simulations and COSMO-RS, referred to as COSMOmic (Klamt, A.; Huniar, U.; Spycher, S.; Keldenich, J. COSMOmic: A Mechanistic Approach to the Calculation of Membrane-Water Partition Coefficients and Internal Distributions within Membranes and Micelles. J. Phys. Chem. B 2008, 112, 12148-12157). All-atom molecular dynamics simulations of the system SDS/water and CTAB/water have been applied in order to retrieve representative micelle structures for further analysis with COSMOmic. For the system CTAB/water, different surfactant concentrations were considered, which results in different micelle sizes. Free energy profiles of more than 200 solutes were predicted and validated by means of experimental partition coefficients. To our knowledge, these are the first quantitative predictions of micelle/water partition coefficients, which are based on whole free energy profiles from molecular methods. Further, the partitioning in lipid bilayer systems containing different hydrophobic tail groups (DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), SOPC (stearoyl-oleoylphosphatidylcholine), DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine), and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)) as well as mixed bilayers was calculated. Experimental partition coefficients (log P) were reproduced with a root-mean-square error (RMSE) of 0.62. To determine the influence of cholesterol as an important component of cellular membranes, free energy profiles in the presence of cholesterol were calculated and shown to be in good agreement with experimental data.


Assuntos
Lipossomos/química , Micelas , Simulação de Dinâmica Molecular , Água/química , Conformação Molecular , Dodecilsulfato de Sódio/química , Termodinâmica
15.
J Chem Phys ; 122(16): 164705, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15945697

RESUMO

The influence of silicalite-1 pores on the reaction equilibria and the selectivity of the propene metathesis reaction system in the temperature range between 300 and 600 K and the pressure range from 0.5 to 7 bars has been investigated with molecular simulations. The reactive Monte Carlo (RxMC) technique was applied for bulk-phase simulations in the isobaric-isothermal ensemble and for two phase systems in the Gibbs ensemble. Additionally, Monte Carlo simulations in the grand-canonical ensemble (GCMC) have been carried out with and without using the RxMC technique. The various simulation procedures were combined with the configurational-bias Monte Carlo approach. It was found that the GCMC simulations are superior to the Gibbs ensemble simulations for reactions where the bulk-phase equilibrium can be calculated in advance and does not have to be simulated simultaneously with the molecules inside the pore. The confined environment can increase the conversion significantly. A large change in selectivity between the bulk phase and the pore phase is observed. Pressure and temperature have strong influences on both conversion and selectivity. At low pressure and temperature both conversion and selectivity have the highest values. The effect of confinement decreases as the temperature increases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA