Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(8): 947-959, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38064241

RESUMO

Rationale: The strongest genetic risk factor for childhood-onset asthma, the 17q21 locus, is associated with increased viral susceptibility and disease-promoting processes.Objectives: To identify biological targets underlying the escalated viral susceptibility associated with the clinical phenotype mediated by the 17q21 locus.Methods: Genome-wide transcriptome analysis of nasal brush samples from 261 children (78 healthy, 79 with wheezing at preschool age, 104 asthmatic) within the ALLIANCE (All-Age-Asthma) cohort, with a median age of 10.0 (range, 1.0-20.0) years, was conducted to explore the impact of their 17q21 genotype (SNP rs72163891). Concurrently, nasal secretions from the same patients and visits were collected, and high-sensitivity mesoscale technology was employed to measure IFN protein levels.Measurements and Main Results: This study revealed that the 17q21 risk allele induces a genotype- and asthma/wheeze phenotype-dependent enhancement of mucosal GSDMB expression as the only relevant 17q21-encoded gene in children with preschool wheeze. Increased GSDMB expression correlated with the activation of a type-1 proinflammatory, cell-lytic immune, and natural killer signature, encompassing key genes linked to an IFN type-2-signature (IFNG, CXCL9, CXCL10, KLRC1, CD8A, GZMA). Conversely, there was a reduction in IFN type 1 and type 3 expression signatures at the mRNA and protein levels.Conclusions: This study demonstrates a novel disease-driving mechanism induced by the 17q21 risk allele. Increased mucosal GSDMB expression is associated with a cell-lytic immune response coupled with compromised airway immunocompetence. These findings suggest that GSDMB-related airway cell death and perturbations in the mucosal IFN signature account for the increased vulnerability of 17q21 risk allele carriers to respiratory viral infections during early life, opening new options for future biological interventions.The All-Age-Asthma (ALLIANCE) cohort is registered at www.clinicaltrials.gov (pediatric arm, NCT02496468).


Assuntos
Asma , Pré-Escolar , Criança , Humanos , Lactente , Adolescente , Adulto Jovem , Adulto , Idoso de 80 Anos ou mais , Genótipo , Fenótipo , Alelos , RNA Mensageiro , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética
2.
Biomed Pharmacother ; 170: 115959, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061134

RESUMO

BACKGROUND: The intensified search for low-threshold herbal anti-viral drugs would be of great advantage in prevention of early stages of infection. Since the SARS-CoV-2 Omicron variant has prevailed in western countries, the course has only been mild, but there are still no widely available drugs that can alleviate or shorten disease progression and counteract the development of Long-COVID. This study aimed to investigate the antiviral effects of a CO2-extract from Petasites hybridus (Ze 339). METHODS: We analyzed the infection and replication rate of SARS-CoV-2 in primary normal human bronchial epithelial cells (NHBEs) using a GFP-expressing version of the wild-type SARS-CoV-2 virus and live cell imaging. Upon infection with a clinical isolate of the Omicron variant, viral RNA content was quantified, and plaque assays were performed. In addition, the human transcriptome was analyzed after 4- and 24-hours post infection using whole genome microarrays. RESULTS: Ze 339 had a protective effect on primary airway epithelial cells during SARS-CoV-2 infection and impeded SARS-CoV-2 infection and replication in NHBE. Notably, Ze 339 inhibited the expression of infection-induced IFNA10 by 8.6-fold (p < 0.05) and additionally reduced a wide range of other interferons (IFNA6, IFNA7, IFNA8, IFNA21, IFNE, IFNW1). CONCLUSION: Thereby, Ze 339 attenuated epithelial infection by SARS-CoV-2 and modeled the IFN response. In conclusion, this study highlights Ze 339 as a potential treatment option for COVID-19 that limits infection-associated cell intrinsic immune responses.


Assuntos
COVID-19 , Petasites , Humanos , SARS-CoV-2 , Dióxido de Carbono , Síndrome de COVID-19 Pós-Aguda , Replicação Viral
3.
Blood Adv ; 8(5): 1167-1178, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38113463

RESUMO

ABSTRACT: Expression of ZAP-70 in a subset of patients with chronic lymphocytic leukemia (CLL) positively correlates with the absence of immunoglobulin heavy-chain gene (IGHV) mutations and is indicative of a more active disease and shorter treatment-free survival. We recently demonstrated that ZAP-70 regulates the constitutive expression of CCL3 and CCL4, activation of AKT, and expression of MYC in the absence of an overt B-cell receptor (BCR) signal, bona fide functions of BCR activation. We, here, provide evidence that these features relate to the presence of a constitutive tonic BCR signal, exclusively found in IGHV-unmutated CLL and dependent on the ZAP-70-mediated activation of AKT and its downstream target GSK-3ß. These findings are associated with increased steady-state activation of CD19 and SRC. Notably this tonic BCR signal is not present in IGHV-mutated CLL cells, discordantly expressing ZAP-70. Results of quantitative mass spectrometry and phosphoprotein analyses indicate that this ZAP-70-dependent, tonic BCR signal regulates CLL cell migration through phosphorylation of LCP1 on serine-5. Indeed, we show that CCL19- and CCL21-induced chemotaxis is regulated by and dependent on the expression of ZAP-70 through its function to enhance CCR7 signaling to LCP1. Thus, our data demonstrate that ZAP-70 converges a tonic BCR signal, exclusively present in IGHV-unmutated CLL and CCR7-mediated chemotaxis.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Receptores CCR7/genética , Glicogênio Sintase Quinase 3 beta , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais
4.
Probiotics Antimicrob Proteins ; 15(4): 868-879, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35113319

RESUMO

Sensing of the intestinal microbiota by the host immune system is important to induce protective immune responses. Hence, modification of the gut microbiota might be able to prevent or treat allergies, mediated by proinflammatory Th2 immune responses. The aim was to investigate the ex vivo immunomodulatory effects of the synbiotics Pollagen® and Kallergen®, containing the probiotic bacterial strains Lactobacillus, Lacticaseibacillus and Bifidobacterium, in the context of grass pollen allergy. Peripheral blood mononuclear cells (PBMCs) from grass pollen-allergic patients and healthy controls were stimulated with grass pollen extract (GPE) and synbiotics and Gata3 expression and cytokine secretion analyzed. Monocyte-derived dendritic cells (MoDCs) cells were matured in the presence of GPE and synbiotics, co-cultured with autologous naïve T cells and maturation markers and cytokine secretion analyzed. GPE stimulation of PBMCs from grass pollen-allergic patients resulted in a significant higher production of the Th2 cytokines IL-4, IL-5, IL-9 and IL-13 compared to healthy controls. Gata3+CD4+ T cell induction was independent of the allergic status. The synbiotics promoted IL-10 and IFN-γ secretion and downregulated the GPE-induced Th2-like phenotype. Co-culturing naïve T cells with MoDCs, matured in the presence of GPE and synbiotics, shifted the GPE-induced Th2 cytokine release towards Th1-Th17-promoting conditions in allergic subjects. The investigated synbiotics are effective in downregulating the GPE-induced Th2 immune response in PBMCs from grass pollen-allergic patients as well as in autologous MoDC-T cell stimulation assays. In addition to increased IL-10 release, the data indicates a shift from a Th2- to a more Th1- and Th17-like phenotype.


Assuntos
Bifidobacterium , Células Dendríticas , Leucócitos Mononucleares , Rinite Alérgica Sazonal , Simbióticos , Humanos , Bifidobacterium/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Lacticaseibacillus/imunologia , Lactobacillus/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Poaceae/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Rinite Alérgica Sazonal/microbiologia , Imunomodulação/imunologia , Células Cultivadas
6.
Biosensors (Basel) ; 12(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36354438

RESUMO

Biosensors such as toll-like receptors (TLR) induce the expression of interferons (IFNs) after viral infection that are critical to the first step in cell-intrinsic host defense mechanisms. Their differential influence on epithelial integrity genes, however, remains elusive. A genome-wide gene expression biosensor chip for gene expression sensing was used to examine the effects of type-I, -II, and -III IFN stimulation on the epithelial expression profiles of primary organotypic 3D air-liquid interface airway cultures. All types of IFNs induced similar interferon-stimulated genes (ISGs): OAS1, OAS2, and IFIT2. However, they differentially induced transcription factors, epithelial modulators, and pro-inflammatory genes. Type-I IFN-induced genes were associated with cell-cell adhesion and tight junctions, while type-III IFNs promoted genes important for transepithelial transport. In contrast, type-II IFN stimulated proliferation-triggering genes associated and enhanced pro-inflammatory mediator secretion. In conclusion, with our microarray system, we provide evidence that the three IFN types exceed their antiviral ISG-response by inducing distinct remodeling processes, thereby likely strengthening the epithelial airway barrier by enhancing cross-cell-integrity (I), transepithelial transport (III) and finally reconstruction through proliferation (II).


Assuntos
Interferon Tipo I , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon Tipo I/farmacologia , Epitélio/metabolismo , Antivirais/farmacologia , Expressão Gênica
7.
Front Allergy ; 3: 993937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172292

RESUMO

MicroRNAs (miRs) have gained scientific attention due to their importance in the pathophysiology of allergic diseases as well as their potential as biomarkers in allergen-specific treatment options. Their function as post-transcriptional regulators, controlling various cellular processes, is of high importance since any single miR can target multiple mRNAs, often within the same signalling pathway. MiRs can alter dysregulated expression of certain cellular responses and contribute to or cause, but in some cases prevent or repress, the development of various diseases. In this review article, we describe current research on the role of specific miRs in regulating immune responses in epithelial cells and specialized immune cells in response to various stimuli, in allergic diseases, and regulation in the therapeutic approach of allergen-specific immunotherapy (AIT). Despite the fact that AIT has been used successfully as a causative treatment option since more than a century, very little is known about the mechanisms of regulation and its connections with microRNAs. In order to fill this gap, this review aims to provide an overview of the current knowledge.

8.
EMBO J ; 41(17): e111608, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833542

RESUMO

The SARS-CoV-2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2'-O-ribose cap needed for viral immune escape. We find that the host cap 2'-O-ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS-CoV-2 replication. Using in silico target-based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti-SARS-CoV-2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co-substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID-19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection-induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Antivirais/farmacologia , Inflamação/tratamento farmacológico , Metiltransferases/metabolismo , Camundongos , Capuzes de RNA/metabolismo , RNA Viral/genética , Ribose , Proteínas não Estruturais Virais/genética
9.
Cells ; 11(9)2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35563693

RESUMO

The airway epithelium provides the first line of defense to the surrounding environment. However, dysfunctions of this physical barrier are frequently observed in allergic diseases, which are tightly connected with pro- or anti-inflammatory processes. When the epithelial cells are confronted with allergens or pathogens, specific response mechanisms are set in motion, which in homeostasis, lead to the elimination of the invaders and leave permanent traces on the respiratory epithelium. However, allergens can also cause damage in the sensitized organism, which can be ascribed to the excessive immune reactions. The tight interaction of epithelial cells of the upper and lower airways with local and systemic immune cells can leave an imprint that may mirror the pathophysiology. The interaction with effector T cells, along with the macrophages, play an important role in this response, as reflected in the gene expression profiles (transcriptomes) of the epithelial cells, as well as in the secretory pattern (secretomes). Further, the storage of information from past exposures as memories within discrete cell types may allow a tissue to inform and fundamentally alter its future responses. Recently, several lines of evidence have highlighted the contributions from myeloid cells, lymphoid cells, stromal cells, mast cells, and epithelial cells to the emerging concepts of inflammatory memory and trained immunity.


Assuntos
Hipersensibilidade , Alérgenos , Células Epiteliais/metabolismo , Epitélio , Humanos , Mucosa Respiratória
10.
EMBO Rep ; 23(6): e54305, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35527514

RESUMO

The severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) is the causative agent of COVID-19, but host cell factors contributing to COVID-19 pathogenesis remain only partly understood. We identify the host metalloprotease ADAM17 as a facilitator of SARS-CoV-2 cell entry and the metalloprotease ADAM10 as a host factor required for lung cell syncytia formation, a hallmark of COVID-19 pathology. ADAM10 and ADAM17, which are broadly expressed in the human lung, cleave the SARS-CoV-2 spike protein (S) in vitro, indicating that ADAM10 and ADAM17 contribute to the priming of S, an essential step for viral entry and cell fusion. ADAM protease-targeted inhibitors severely impair lung cell infection by the SARS-CoV-2 variants of concern alpha, beta, delta, and omicron and also reduce SARS-CoV-2 infection of primary human lung cells in a TMPRSS2 protease-independent manner. Our study establishes ADAM10 and ADAM17 as host cell factors for viral entry and syncytia formation and defines both proteases as potential targets for antiviral drug development.


Assuntos
COVID-19 , SARS-CoV-2 , Proteína ADAM10/genética , Proteína ADAM17 , Secretases da Proteína Precursora do Amiloide/genética , Enzima de Conversão de Angiotensina 2 , Fusão Celular , Humanos , Pulmão , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Metaloproteases , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus
11.
Toxins (Basel) ; 14(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35448893

RESUMO

Allergy to Polistes dominula (European paper wasp) venom is of particular relevance in Southern Europe, potentially becoming a threat in other regions in the near future, and can be effectively cured by venom immunotherapy (VIT). As allergen content in extracts may vary and have an impact on diagnostic and therapeutic approaches, the aim was to compare five therapeutic preparations for VIT of P. dominula venom allergy available in Spain. Products from five different suppliers were analyzed by SDS-PAGE and LC-MS/MS and compared with a reference venom sample. Three products with P. dominula venom and one product with a venom mixture of American Polistes species showed a comparable band pattern in SDS-PAGE as the reference sample and the bands of the major allergens phospholipase A1 and antigen 5 were assignable. The other product, which consists of a mixture of American Polistes species, exhibited the typical band pattern in one, but not in another sample from a second batch. All annotated P. dominula allergens were detected at comparable levels in LC-MS/MS analysis of products containing P. dominula venom. Due to a lack of genomic information on the American Polistes species, the remaining products were not analyzed by this method. The major Polistes allergens were present in comparable amounts in the majority, but not in all investigated samples of venom preparations for VIT of P. dominula venom allergy.


Assuntos
Hipersensibilidade , Vespas , Alérgenos , Animais , Cromatografia Líquida , Dessensibilização Imunológica , Espectrometria de Massas em Tandem , Venenos de Vespas
12.
J Mol Med (Berl) ; 100(4): 613-627, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247068

RESUMO

SARS-CoV-2 has evolved to enter the host via the ACE2 receptor which is part of the kinin-kallikrein pathway. This complex pathway is only poorly understood in context of immune regulation but critical to control infection. This study examines SARS-CoV-2-infection and epithelial mechanisms of the kinin-kallikrein-system at the kinin B2 receptor level in SARS-CoV-2-infection that is of direct translational relevance. From acute SARS-CoV-2-positive study participants and -negative controls, transcriptomes of nasal curettages were analyzed. Primary airway epithelial cells (NHBEs) were infected with SARS-CoV-2 and treated with the approved B2R-antagonist icatibant. SARS-CoV-2 RNA RT-qPCR, cytotoxicity assays, plaque assays, and transcriptome analyses were performed. The treatment effect was further studied in a murine airway inflammation model in vivo. Here, we report a broad and strong upregulation of kallikreins and the kinin B2 receptor (B2R) in the nasal mucosa of acutely symptomatic SARS-CoV-2-positive study participants. A B2R-antagonist impeded SARS-CoV-2 replication and spread in NHBEs, as determined in plaque assays on Vero-E6 cells. B2R-antagonism reduced the expression of SARS-CoV-2 entry receptor ACE2, G protein-coupled receptor signaling, and ion transport in vitro and in a murine airway inflammation in vivo model. In summary, this study provides evidence that treatment with B2R-antagonists protects airway epithelial cells from SARS-CoV-2 by inhibiting its replication and spread, through the reduction of ACE2 levels and the interference with several cellular signaling processes. Future clinical studies need to shed light on the airway protection potential of approved B2R-antagonists, like icatibant, in the treatment of early-stage COVID-19. KEY MESSAGES: Induction of kinin B2 receptor in the nose of SARS-CoV-2-positive patients. Treatment with B2R-antagonist protects airway epithelial cells from SARS-CoV-2. B2R-antagonist reduces ACE2 levels in vivo and ex vivo. Protection by B2R-antagonist is mediated by inhibiting viral replication and spread.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Epitélio , Humanos , Camundongos , RNA Viral , Receptor B2 da Bradicinina/genética , Receptor B2 da Bradicinina/metabolismo
13.
Allergy ; 77(3): 767-777, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343347

RESUMO

The proteins of the secretoglobin (SCGB) family are expressed by secretory tissues of barrier organs. They are embedded in immunoregulatory and anti-inflammatory processes of airway diseases. This review particularly illustrates the immune regulation of SCGBs by cytokines and their implication in the pathophysiology of airway diseases. The biology of SCGBs is a complex topic of increasing importance, as they are highly abundant in the respiratory tract and can also be detected in malignant tissues and as elements of immune control. In addition, SCGBs react to cytokines, they are embedded in Th1 and Th2 immune responses, and they are expressed in a manner dependent on cell maturation. The big picture of the SCGB family identifies these factors as critical elements of innate immune control at the epithelial barriers and highlights their potential for diagnostic assessment of epithelial activity. Some members of the SCGB family have so far only been superficially examined, but have high potential for translational research.


Assuntos
Citocinas , Imunidade , Citocinas/metabolismo , Humanos , Secretoglobinas/metabolismo
14.
Clin Exp Allergy ; 51(12): 1577-1591, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34514658

RESUMO

BACKGROUND: Several microRNAs (miRs) have been described as potential biomarkers in liquid biopsies and in the context of allergic asthma, while therapeutic effects on the airway expression of miRs remain elusive. In this study, we investigated epigenetic miR-associated mechanisms in the sputum of grass pollen-allergic patients with and without allergen-specific immunotherapy (AIT). METHODS: Induced sputum samples of healthy controls (HC), AIT-treated and -untreated grass pollen-allergic rhinitis patients with (AA) and without asthma (AR) were profiled using miR microarray and whole-transcriptome microarray analysis of the same samples. miR targets were predicted in silico and used to identify inverse regulation. Local PGE2  levels were measured using ELISA. RESULTS: Two hundred and fifty nine miRs were upregulated in the sputum of AA patients compared with HC, while only one was downregulated. The inverse picture was observed in induced sputum of AIT-treated patients: while 21 miRs were downregulated, only 4 miRs were upregulated in asthmatics upon AIT. Of these 4 miRs, miR-3935 stood out, as its predicted target PTGER3, the prostaglandin EP3 receptor, was downregulated in treated AA patients compared with untreated. The levels of its ligand PGE2 in the sputum supernatants of these samples were increased in allergic patients, especially asthmatics, and downregulated after AIT. Finally, local PGE2  levels correlated with ILC2 frequencies, secreted sputum IL-13 levels, inflammatory cell load, sputum eosinophils and symptom burden. CONCLUSIONS: While profiling the sputum of allergic patients for novel miR expression patterns, we uncovered an association between miR-3935 and its predicted target gene, the prostaglandin E3 receptor, which might mediate AIT effects through suppression of the PGE2 -PTGER3 axis.


Assuntos
MicroRNAs , Rinite Alérgica , Alérgenos , Dessensibilização Imunológica , Humanos , Imunidade Inata , Linfócitos , MicroRNAs/genética , Prostaglandinas , Receptores de Prostaglandina/genética , Escarro
15.
Allergy ; 76(9): 2827-2839, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33969495

RESUMO

BACKGROUND: Studies show that proallergic TH 2 cells decrease after successful allergen-specific immunotherapy (AIT). It is likely that iatrogenic administration of allergens drives these cells to exhaustion due to chronic T-cell receptor stimulation. This study aimed to investigate the exhaustion of T cells in connection with allergen exposure during AIT in mice and two independent patient cohorts. METHODS: OVA-sensitized C57BL/6J mice were challenged and treated with OVA, and the development of exhaustion in local and systemic TH 2 cells was analyzed. In patients, the expression of exhaustion-associated surface markers on TH 2 cells was evaluated using flow cytometry in a cross-sectional grass pollen allergy cohort with and without AIT. The treatment effect was further studied in PBMC collected from a prospective long-term AIT cohort. RESULTS: The exhaustion-associated surface markers CTLA-4 and PD-1 were significantly upregulated on TH 2 cells upon OVA aerosol exposure in OVA-allergic compared to non-allergic mice. CTLA-4 and PD-1 decreased after AIT, in particular on the surface of local lung TH 2 cells. Similarly, CTLA-4 and PD-1 expression was enhanced on TH 2 cells from patients with allergic rhinitis with an even stronger effect in those with concomitant asthma. Using an unbiased Louvain clustering analysis, we discovered a late-differentiated TH 2 population expressing both markers that decreased during up-dosing but persisted long term during the maintenance phase. CONCLUSIONS: This study shows that allergen exposure promotes CTLA-4 and PD-1 expression on TH 2 cells and that the dynamic change in frequencies of exhausted TH 2 cells exhibits a differential pattern during the up-dosing versus the maintenance phases of AIT.


Assuntos
Dessensibilização Imunológica , Leucócitos Mononucleares , Alérgenos , Animais , Estudos Transversais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Estudos Prospectivos
16.
Blood ; 137(26): 3629-3640, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619528

RESUMO

The expression of ZAP-70 in a subset of chronic lymphocytic leukemia (CLL) patients strongly correlates with a more aggressive clinical course, although the exact underlying mechanisms remain elusive. The ability of ZAP-70 to enhance B-cell receptor (BCR) signaling, independently of its kinase function, is considered to contribute. We used RNA-sequencing and proteomic analyses of primary cells differing only in their expression of ZAP-70 to further define how ZAP-70 increases the aggressiveness of CLL. We identified that ZAP-70 is directly required for cell survival in the absence of an overt BCR signal, which can compensate for ZAP-70 deficiency as an antiapoptotic signal. In addition, the expression of ZAP-70 regulates the transcription of factors regulating the recruitment and activation of T cells, such as CCL3, CCL4, and IL4I1. Quantitative mass spectrometry of double-cross-linked ZAP-70 complexes further demonstrated constitutive and direct protein-protein interactions between ZAP-70 and BCR-signaling components. Unexpectedly, ZAP-70 also binds to ribosomal proteins, which is not dependent on, but is further increased by, BCR stimulation. Importantly, decreased expression of ZAP-70 significantly reduced MYC expression and global protein synthesis, providing evidence that ZAP-70 contributes to translational dysregulation in CLL. In conclusion, ZAP-70 constitutively promotes cell survival, microenvironment interactions, and protein synthesis in CLL cells, likely to improve cellular fitness and to further drive disease progression.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Biossíntese de Proteínas , Proteína-Tirosina Quinase ZAP-70/metabolismo , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Masculino , Proteínas de Neoplasias/genética , Células Tumorais Cultivadas , Proteína-Tirosina Quinase ZAP-70/genética
17.
Allergy ; 76(8): 2461-2474, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33528894

RESUMO

BACKGROUND: While several systemic immunomodulatory effects of allergen-specific immunotherapy (AIT) have been discovered, local anti-inflammatory mechanisms in the respiratory tract are largely unknown. We sought to elucidate local and epithelial mechanisms underlying allergen-specific immunotherapy in a genome-wide approach. METHODS: We induced sputum in hay fever patients and healthy controls during the pollen peak season and stratified patients by effective allergen immunotherapy or as untreated. Sputum was directly processed after induction and subjected to whole transcriptome RNA microarray analysis. Nasal secretions were analyzed for Secretoglobin1A1 (SCGB1A1) and IL-24 protein levels in an additional validation cohort at three defined time points during the 3-year course of AIT. Subsequently, RNA was extracted and subjected to an array-based whole transcriptome analysis. RESULTS: Allergen-specific immunotherapy inhibited pro-inflammatory CXCL8, IL24, and CCL26mRNA expression, while SCGB1A1, IL7, CCL5, CCL23, and WNT5BmRNAs were induced independently of the asthma status and allergen season. In our validation cohort, local increase of SCGB1A1 occurred concomitantly with the reduction of local IL-24 in upper airways during the course of AIT. Additionally, SCGB1A1 was identified as a suppressor of epithelial gene expression. CONCLUSIONS: Allergen-specific immunotherapy induces a yet unknown local gene expression footprint in the lower airways that on one hand appears to be a result of multiple regulatory pathways and on the other hand reveals SCGB1A1 as novel anti-inflammatory mediator of long-term allergen-specific therapeutic intervention in the local environment.


Assuntos
Dessensibilização Imunológica , Rinite Alérgica Sazonal , Uteroglobina/metabolismo , Alérgenos , Humanos , Sistema Respiratório
18.
Front Immunol ; 12: 763243, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069535

RESUMO

TGF-ß1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-ß is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFß-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-ß and IL-9 secretion. Altogether, these findings support that neutralization of TGF-ß represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta1/imunologia , Alérgenos/genética , Animais , Asma/genética , Asma/patologia , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos Transgênicos , Fator de Crescimento Transformador beta1/genética
19.
Allergy ; 76(4): 1010-1023, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33128851

RESUMO

Allergic diseases of the (upper and lower) airways, the skin and the gastrointestinal tract, are on the rise, resulting in impaired quality of life, decreased productivity, and increased healthcare costs. As allergic diseases are mostly tissue-specific, local sampling methods for respective biomarkers offer the potential for increased sensitivity and specificity. Additionally, local sampling using noninvasive or minimally invasive methods can be cost-effective and well tolerated, which may even be suitable for primary or home care sampling. Non- or minimally invasive local sampling and diagnostics may enable a more thorough endotyping, may help to avoid under- or overdiagnosis, and may provide the possibility to approach precision prevention, due to early diagnosis of these local diseases even before they get systemically manifested and detectable. At the same time, dried blood samples may help to facilitate minimal-invasive primary or home care sampling for classical systemic diagnostic approaches. This EAACI position paper contains a thorough review of the various technologies in allergy diagnosis available on the market, which analytes or biomarkers are employed, and which samples or matrices can be used. Based on this assessment, EAACI position is to drive these developments to efficiently identify allergy and possibly later also viral epidemics and take advantage of comprehensive knowledge to initiate preventions and treatments.


Assuntos
Hipersensibilidade , Qualidade de Vida , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/terapia , Sistema Respiratório , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA