Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686675

RESUMO

The present article attempts to interpret the modulation of photophysical properties of isophthalic acid (IPA) through its amino [5-amino isophthalic acid (5-amino IPA)] and azido [5-azido isophthalic acid (5-azido IPA)] substituted derivatives which are chemically potent organic ligands. The ground state structure-reactivity correlation of 5-amino IPA and 5-azido IPA has been deciphered through computational studies. The computed energetics show significant interaction feasibility of the substituted ligand systems with the biomimetic systems which is further validated experimentally. The binding interaction of the probes with oppositely polarized functionalization is studied to be significant with cetyltrimethylammonium bromide (CTAB) and bovine serum albumin (BSA) with the amino functionalized derivative having a comparatively stronger binding constant value. The steady-state absorption and fluorescence study establish significant modification of polarity of the heteronuclear probes. The micro polarity study in water-dioxane mixtures enables determination of polarity of 5-amino IPA in CTAB and BSA unlike 5-azido IPA. Presence of an overlapping region between the emission spectrum of BSA and the absorption spectrum of the probes as probable donor-acceptor pair are also scrutinized via the steady-state fluorescence studies. The photophysical behavior of 5-amino IPA is observed to be somewhat dissimilar to that of 5-azido IPA.

2.
BMC Genomics ; 19(1): 16, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301493

RESUMO

BACKGROUND: Xanthomonas citri, a causal agent of citrus canker, has been a well-studied model system due to recent availability of whole genome sequences of multiple strains from different geographical regions. Major limitations in our understanding of the evolution of pathogenicity factors in X. citri strains sequenced by short-read sequencing methods have been tracking plasmid reshuffling among strains due to inability to accurately assign reads to plasmids, and analyzing repeat regions among strains. X. citri harbors major pathogenicity determinants, including variable DNA-binding repeat region containing Transcription Activator-like Effectors (TALEs) on plasmids. The long-read sequencing method, PacBio, has allowed the ability to obtain complete and accurate sequences of TALEs in xanthomonads. We recently sequenced Xanthomonas citri str. Xc-03-1638-1-1, a copper tolerant A group strain isolated from grapefruit in 2003 from Argentina using PacBio RS II chemistry. We analyzed plasmid profiles, copy number and location of TALEs in complete genome sequences of X. citri strains. RESULTS: We utilized the power of long reads obtained by PacBio sequencing to enable assembly of a complete genome sequence of strain Xc-03-1638-1-1, including sequences of two plasmids, 249 kb (plasmid harboring copper resistance genes) and 99 kb (pathogenicity plasmid containing TALEs). The pathogenicity plasmid in this strain is a hybrid plasmid containing four TALEs. Due to the intriguing nature of this pathogenicity plasmid with Tn3-like transposon association, repetitive elements and multiple putative sites for origins of replication, we might expect alternative structures of this plasmid in nature, illustrating the strong adaptive potential of X. citri strains. Analysis of the pathogenicity plasmid among completely sequenced X. citri strains, coupled with Southern hybridization of the pathogenicity plasmids, revealed clues to rearrangements of plasmids and resulting reshuffling of TALEs among strains. CONCLUSIONS: We demonstrate in this study the importance of long-read sequencing for obtaining intact sequences of TALEs and plasmids, as well as for identifying rearrangement events including plasmid reshuffling. Rearrangement events, such as the hybrid plasmid in this case, could be a frequent phenomenon in the evolution of X. citri strains, although so far it is undetected due to the inability to obtain complete plasmid sequences with short-read sequencing methods.


Assuntos
Plasmídeos/genética , Recombinação Genética , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/genética , Cromossomos Bacterianos , Cobre/farmacologia , Elementos de DNA Transponíveis , Genoma Bacteriano , Análise de Sequência de DNA , Xanthomonas/efeitos dos fármacos
3.
Microbiologyopen ; 4(4): 553-73, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25940918

RESUMO

Pseudomonas syringae pv. syringae is a common plant-associated bacterium that causes diseases of both monocot and dicot plants worldwide. To help delineate traits critical to adaptation and survival in the plant environment, we generated complete genome sequences of P. syringae pv. syringae strains B301D and HS191, which represent dicot and monocot strains with distinct host specificities. Intrapathovar comparisons of the B301D (6.09 Mb) and HS191 (5.95 Mb plus a 52 kb pCG131 plasmid) genomes to the previously sequenced B728a genome demonstrated that the shared genes encompass about 83% of each genome, and include genes for siderophore biosynthesis, osmotolerance, and extracellular polysaccharide production. Between 7% and 12% of the genes are unique among the genomes, and most of the unique gene regions carry transposons, phage elements, or IS elements associated with horizontal gene transfer. Differences are observed in the type III effector composition for the three strains that likely influences host range. The HS191 genome had the largest number at 25 of effector genes, and seven effector genes are specific to this monocot strain. Toxin production is another major trait associated with virulence of P. syringae pv. syringae, and HS191 is distinguished by genes for production of syringopeptin SP25 and mangotoxin.


Assuntos
Genoma Bacteriano , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Fatores de Virulência/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
4.
ISME J ; 9(10): 2128-38, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25689023

RESUMO

Understanding the evolutionary history and potential of bacterial pathogens is critical to prevent the emergence of new infectious bacterial diseases. Xanthomonas axonopodis subsp. citri (Xac) (synonym X. citri subsp. citri), which causes citrus canker, is one of the hardest-fought plant bacterial pathogens in US history. Here, we sequenced 21 Xac strains (14 XacA, 3 XacA* and 4 XacA(w)) with different host ranges from North America and Asia and conducted comparative genomic and evolutionary analyses. Our analyses suggest that acquisition of beneficial genes and loss of detrimental genes most likely allowed XacA to infect a broader range of hosts as compared with XacA(w) and XacA*. Recombination was found to have occurred frequently on the relative ancient branches, but rarely on the young branches of the clonal genealogy. The ratio of recombination/mutation ρ/θ was 0.0790±0.0005, implying that the Xac population was clonal in structure. Positive selection has affected 14% (395 out of 2822) of core genes of the citrus canker-causing Xanthomonas. The genes affected are enriched in 'carbohydrate transport and metabolism' and 'DNA replication, recombination and repair' genes (P<0.05). Many genes related to virulence, especially genes involved in the type III secretion system and effectors, are affected by positive selection, further highlighting the contribution of positive selection to the evolution of citrus canker-causing Xanthomonas. Our results suggest that both metabolism and virulence genes provide advantages to endow XacA with higher virulence and a wider host range. Our analysis advances our understanding of the genomic basis of specialization by positive selection in bacterial evolution.


Assuntos
Citrus/microbiologia , Genômica , Doenças das Plantas/microbiologia , Seleção Genética/genética , Xanthomonas axonopodis/genética , Evolução Biológica , DNA Bacteriano/análise , Genoma Bacteriano , Especificidade de Hospedeiro/genética , Análise de Sequência de DNA/métodos , Virulência/genética , Xanthomonas axonopodis/classificação , Xanthomonas axonopodis/patogenicidade
5.
BMC Genomics ; 14: 551, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23941402

RESUMO

BACKGROUND: Citrus bacterial canker is a disease that has severe economic impact on citrus industries worldwide and is caused by a few species and pathotypes of Xanthomonas. X. citri subsp. citri strain 306 (XccA306) is a type A (Asiatic) strain with a wide host range, whereas its variant X. citri subsp. citri strain A(w)12879 (Xcaw12879, Wellington strain) is restricted to Mexican lime. RESULTS: To characterize the mechanism for the differences in host range of XccA and Xcaw, the genome of Xcaw12879 that was completed recently was compared with XccA306 genome. Effectors xopAF and avrGf1 are present in Xcaw12879, but were absent in XccA306. AvrGf1 was shown previously for Xcaw to cause hypersensitive response in Duncan grapefruit. Mutation analysis of xopAF indicates that the gene contributes to Xcaw growth in Mexican lime but does not contribute to the limited host range of Xcaw. RNA-Seq analysis was conducted to compare the expression profiles of Xcaw12879 and XccA306 in Nutrient Broth (NB) medium and XVM2 medium, which induces hrp gene expression. Two hundred ninety two and 281 genes showed differential expression in XVM2 compared to in NB for XccA306 and Xcaw12879, respectively. Twenty-five type 3 secretion system genes were up-regulated in XVM2 for both XccA and Xcaw. Among the 4,370 common genes of Xcaw12879 compared to XccA306, 603 genes in NB and 450 genes in XVM2 conditions were differentially regulated. Xcaw12879 showed higher protease activity than XccA306 whereas Xcaw12879 showed lower pectate lyase activity in comparison to XccA306. CONCLUSIONS: Comparative genomic analysis of XccA306 and Xcaw12879 identified strain specific genes. Our study indicated that AvrGf1 contributes to the host range limitation of Xcaw12879 whereas XopAF contributes to virulence. Transcriptome analyses of XccA306 and Xcaw12879 presented insights into the expression of the two closely related strains of X. citri subsp. citri. Virulence genes including genes encoding T3SS components and effectors are induced in XVM2 medium. Numerous genes with differential expression in Xcaw12879 and XccA306 were identified. This study provided the foundation to further characterize the mechanisms for virulence and host range of pathotypes of X. citri subsp. citri.


Assuntos
Perfilação da Expressão Gênica , Genoma Bacteriano , Genômica , Xanthomonas/genética , Xanthomonas/patogenicidade , Cromossomos Bacterianos , Citrus paradisi/genética , Citrus paradisi/microbiologia , Regulação da Expressão Gênica de Plantas , Genes Bacterianos , Interações Hospedeiro-Patógeno , Família Multigênica , Tipagem de Sequências Multilocus , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Virulência/genética , Xanthomonas/classificação
6.
Genome Announc ; 1(3)2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23682143

RESUMO

Xanthomonas citri subsp. citri causes citrus canker. The Asiatic strain has a broad host range, whereas the Wellington variant has a restricted host range. Here, we present the complete genome of X. citri subsp. citri strain A(W)12879. This study lays the foundation to further characterize the mechanisms for virulence and host range of X. citri.

7.
J Bacteriol ; 193(22): 6342-57, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21908674

RESUMO

Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity.


Assuntos
Citrus/microbiologia , Genômica , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Xanthomonas axonopodis/genética , Xanthomonas axonopodis/patogenicidade , Proteínas de Bactérias/genética , Genoma Bacteriano , Dados de Sequência Molecular , Filogenia , Virulência , Xanthomonas/classificação , Xanthomonas/genética , Xanthomonas/patogenicidade , Xanthomonas/fisiologia , Xanthomonas axonopodis/classificação , Xanthomonas axonopodis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA