Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Can J Kidney Health Dis ; 10: 20543581231177844, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313365

RESUMO

Background: At the time a kidney offer is made by an organ donation organization (ODO), transplant physicians must inform candidates on the pros and cons of accepting or declining the offer. Although physicians have a general idea of expected wait time to kidney transplantation by blood group in their ODO, there are no tools that provide quantitative estimates based on the allocation score used and donor/candidate characteristics. This limits the shared decision-making process at the time of kidney offer as (1) the consequences of declining an offer in terms of wait-time prolongation cannot be provided and (2) the quality of the current offer cannot be compared with that of offers that could be made to the specific candidate in the future. This is especially relevant to older transplant candidates as many ODOs use some form of utility matching in their allocation score. Objective: We aimed to develop a novel method to provide personalized estimates of wait time to next offer and quality of future offers for kidney transplant candidates if they refused a current deceased donor offer from an ODO. Design: A retrospective cohort study. Setting: Administrative data from Transplant Quebec. Patients: All patients who were actively registered on the kidney transplant wait list at any point between March 29, 2012 and December 13, 2017. Measurements: The time to next offer was defined as the number of days between the time of the current offer and the next offer if the current one were declined. The quality of the offers was measured with the 10-variable Kidney Donor Risk Index (KDRI) equation. Methods: Candidate-specific kidney offer arrival was modeled with a marked Poisson process. To derive the lambda parameter for the marked Poisson process for each candidate, the arrival of donors was examined in the 2 years prior to the time of the current offer. The Transplant Quebec allocation score was calculated for each ABO-compatible offer with the characteristics that the candidate presented at the time of the current offer. Offers where the candidate's score was lower than the scores of actual recipients of the second kidneys transplanted were filtered out from the candidate-specific kidney offer arrival. The KDRIs of offers that remained were averaged to provide an estimate of the quality of future offers, to be compared with that of the current offer. Results: During the study period, there were 848 unique donors and 1696 transplant candidates actively registered. The models provide the following information: average time to next offer, time to which there is a 95% probability of receiving a next offer, average KDRI of future offers. The C-index of the model was 0.72. When compared with providing average group estimates of wait time and KDRI of future offers, the model reduced the root-mean-square error in the predicted time to next offer from 137 to 84 days and that of predicted KDRI of future offers from 0.64 to 0.55. The precision of the model's predictions was higher when observed times to next offer were 5 months or less. Limitations: The models assume that patients declining an offer remain wait-listed until the next one. The model only updates wait time every year after the time of an offer and not in a continuous fashion. Conclusion: By providing personalized quantitative estimates of time to and quality of future offers, our new approach can inform the shared decision-making process between transplant candidates and physicians when a kidney offer from a deceased donor is made by an ODO.


Contexte: Lorsqu'un organisme de don d'organes (ODO) propose un rein pour la transplantation, les médecins transplantologues se doivent d'informer les candidats des avantages et inconvénients d'accepter ou de refuser cette offre. Bien que les médecins aient une idée générale du temps d'attente à prévoir dans leur ODO pour une transplantation rénale selon le groupe sanguin, il n'existe aucun outil fournissant des estimations quantitatives fondées sur la cote d'attribution utilisée et les caractéristiques du donneur/candidat. Cela limite le processus partagé de prise de décision au moment d'une offre, car 1) les conséquences du refus relativement à la prolongation du temps d'attente ne peuvent être fournies; et 2) parce que la qualité de l'offre en cours ne peut être comparée à celle des offres qui pourraient être faites ultérieurement au même candidat. Ceci est particulièrement pertinent pour les candidats à une transplantation qui sont plus âgés, car de nombreux ODO utilisent une certaine forme de correspondance d'utilité dans leur cote d'attribution. Objectif: Nous souhaitions développer une nouvelle méthode pour fournir des estimations personnalisées du temps d'attente jusqu'à l'offre suivante et de la qualité des offres ultérieures pour les candidats à la transplantation rénale ayant refusé l'offre d'un ODO pour le rein d'un donneur décédé. Type d'étude: Étude de cohorte rétrospective. Cadre: Données administratives de Transplant Québec. Sujets: Tous les patients qui étaient activement inscrits sur la liste d'attente pour une greffe rénale à un moment donné entre le 29 mars 2012 et le 13 décembre 2017. Mesures: Le temps jusqu'à l'offre suivante a été défini comme le nombre de jours entre le moment de l'offre en cours et celui de la suivante, si la première est refusée. L'équation KDRI (Kidney Donor Risk Index) à 10 variables a servi à mesurer la qualité des offres. Méthodologie: L'arrivée d'une offre de rein spécifique à un candidat a été modélisée par un processus de Poisson marqué. L'arrivée des donneurs a été examinée pour les 2 ans précédant le moment de l'offre en cours afin de dériver le paramètre lambda du processus de Poisson marqué pour chaque candidat. La cote d'attribution de Transplant Québec a été calculée pour chaque offre compatible ABO avec les caractéristiques que le candidat présentait au moment de l'offre en cours. Les offres pour lesquelles la cote du candidat était inférieure aux cotes des receveurs réels des deuxièmes reins transplantés ont été retirées de l'arrivée des offres spécifiques à un candidat. La moyenne des valeurs KDRI des offres restantes a été calculée pour fournir une estimation de la qualité des offres futures, à comparer à celle de l'offre en cours. Résultats: Au cours de la période étudiée, 848 donneurs uniques et 1 696 candidats à la transplantation étaient inscrits activement. Les modèles fournissent les informations suivantes: le temps moyen jusqu'à l'offre suivante, délai au bout duquel il y a une probabilité de 95 % de recevoir la prochaine offre, la moyenne des valeurs KDRI des offres futures. L'indice C du modèle était de 0,72. Par rapport aux estimations moyennes du groupe en ce qui concerne le temps d'attente et la valeur KDRI des offres futures, le modèle a permis de réduire l'erreur quadratique moyenne de 137 à 84 jours pour le temps jusqu'à la prochaine offre, et de 0,64 à 0,55 pour la valeur KDRI prévue des offres futures. La précision des prédictions offertes par le modèle était plus élevée lorsque le temps jusqu'à l'offre suivante était de cinq mois ou moins. Limites: Le modèle suppose que les patients qui refusent une offre demeurent sur la liste d'attente jusqu'à l'offre suivante. Le modèle ne met à jour le temps d'attente que chaque année après la date de l'offre, et non de façon continue. Conclusion: En fournissant des estimations quantitatives personnalisées du temps jusqu'à l'offre suivante et de la qualité des offres futures, notre nouvelle approche peut éclairer le processus décisionnel partagé des candidats à la transplantation et des médecins lorsqu'une offre de rein provenant d'un donneur décédé est faite par le biais d'un ODO.

2.
Water Res ; 164: 114869, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377523

RESUMO

Past waterborne outbreaks have demonstrated that informed vulnerability assessment of drinking water supplies is paramount for the provision of safe drinking water. Although current monitoring frameworks are not designed to account for short-term peak concentrations of fecal microorganisms in source waters, the recent development of online microbial monitoring technologies is expected to fill this knowledge gap. In this study, online near real-time monitoring of ß-d-glucuronidase (GLUC) activity was conducted for 1.5 years at an urban drinking water intake impacted by multiple point sources of fecal pollution. Parallel routine and event-based monitoring of E. coli and online measurement of physico-chemistry were performed at the intake and their dynamics compared over time. GLUC activity fluctuations ranged from seasonal to hourly time scales. All peak contamination episodes occurred between late fall and early spring following intense rainfall and/or snowmelt. In the absence of rainfall, recurrent daily fluctuations in GLUC activity and culturable E. coli were observed at the intake, a pattern otherwise ignored by regulatory monitoring. Cross-correlation analysis of time series retrieved from the drinking water intake and an upstream Water Resource Recovery Facility (WRRF) demonstrated a hydraulic connection between the two sites. Sewage by-passes from the same WRRF were the main drivers of intermittent GLUC activity and E. coli peaks at the drinking water intake following intense precipitation and/or snowmelt. Near real-time monitoring of fecal pollution through GLUC activity enabled a thorough characterization of the frequency, duration and amplitude of peak contamination periods at the urban drinking water intake while providing crucial information for the identification of the dominant upstream fecal pollution sources. To the best of our knowledge, this is the first characterization of a hydraulic connection between a WRRF and a downstream drinking water intake across hourly to seasonal timescales using high frequency microbial monitoring data. Ultimately, this should help improve source water protection through catchment mitigation actions, especially in a context of de facto wastewater reuse.


Assuntos
Água Potável , Águas Residuárias , Monitoramento Ambiental , Escherichia coli , Fezes , Glucuronidase , Microbiologia da Água , Poluição da Água , Abastecimento de Água
3.
Sci Rep ; 8(1): 5831, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643459

RESUMO

Estimates of the 1.5 °C carbon budget vary widely among recent studies, emphasizing the need to better understand and quantify key sources of uncertainty. Here we quantify the impact of carbon cycle uncertainty and non-CO2 forcing on the 1.5 °C carbon budget in the context of a prescribed 1.5 °C temperature stabilization scenario. We use Bayes theorem to weight members of a perturbed parameter ensemble with varying land and ocean carbon uptake, to derive an estimate for the fossil fuel (FF) carbon budget of 469 PgC since 1850, with a 95% likelihood range of (411,528) PgC. CO2 emissions from land-use change (LUC) add about 230 PgC. Our best estimate of the total (FF + LUC) carbon budget for 1.5 °C is therefore 699 PgC, which corresponds to about 11 years of current emissions. Non-CO2 greenhouse gas and aerosol emissions represent equivalent cumulative CO2 emissions of about 510 PgC and -180 PgC for 1.5 °C, respectively. The increased LUC, high non-CO2 emissions and decreased aerosols in our scenario, cause the long-term FF carbon budget to decrease following temperature stabilization. In this scenario, negative emissions would be required to compensate not only for the increasing non-CO2 climate forcing, but also for the declining natural carbon sinks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA