Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(5): e16624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38757353

RESUMO

Laminarin, a ß(1,3)-glucan, serves as a storage polysaccharide in marine microalgae such as diatoms. Its abundance, water solubility and simple structure make it an appealing substrate for marine bacteria. Consequently, many marine bacteria have evolved strategies to scavenge and decompose laminarin, employing carbohydrate-binding modules (CBMs) as crucial components. In this study, we characterized two previously unassigned domains as laminarin-binding CBMs in multimodular proteins from the marine bacterium Christiangramia forsetii KT0803T, thereby introducing the new laminarin-binding CBM families CBM102 and CBM103. We identified four CBM102s in a surface glycan-binding protein (SGBP) and a single CBM103 linked to a glycoside hydrolase module from family 16 (GH16_3). Our analysis revealed that both modular proteins have an elongated shape, with GH16_3 exhibiting greater flexibility than SGBP. This flexibility may aid in the recognition and/or degradation of laminarin, while the constraints in SGBP could facilitate the docking of laminarin onto the bacterial surface. Exploration of bacterial metagenome-assembled genomes (MAGs) from phytoplankton blooms in the North Sea showed that both laminarin-binding CBM families are widespread among marine Bacteroidota. The high protein abundance of CBM102- and CBM103-containing proteins during phytoplankton blooms further emphasizes their significance in marine laminarin utilization.


Assuntos
Proteínas de Bactérias , Glucanos , Fitoplâncton , Glucanos/metabolismo , Fitoplâncton/metabolismo , Fitoplâncton/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bacteroidetes/metabolismo , Bacteroidetes/genética , Eutrofização , Diatomáceas/metabolismo , Diatomáceas/genética , Receptores de Superfície Celular
2.
J Biol Chem ; 298(12): 102707, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36402445

RESUMO

The carrageenophyte red alga Chondrus crispus produces three family 16 glycoside hydrolases (CcGH16-1, CcGH16-2, and CcGH16-3). Phylogenetically, the red algal GH16 members are closely related to bacterial GH16 homologs from subfamilies 13 and 14, which have characterized marine bacterial ß-carrageenase and ß-porphyranase activities, respectively, yet the functions of these CcGH16 hydrolases have not been determined. Here, we first confirmed the gene locus of the ccgh16-3 gene in the alga to facilitate further investigation. Next, our biochemical characterization of CcGH16-3 revealed an unexpected ß-porphyranase activity, since porphyran is not a known component of the C. crispus extracellular matrix. Kinetic characterization was undertaken on natural porphyran substrate with an experimentally determined molecular weight. We found CcGH16-3 has a pH optimum between 7.5 and 8.0; however, it exhibits reasonably stable activity over a large pH range (pH 7.0-9.0). CcGH16-3 has a KM of 4.0 ± 0.8 µM, a kcat of 79.9 ± 6.9 s-1, and a kcat/KM of 20.1 ± 1.7 µM-1 s-1. We structurally examined fine enzymatic specificity by performing a subsite dissection. CcGH16-3 has a strict requirement for D-galactose and L-galactose-6-sulfate in its -1 and +1 subsites, respectively, whereas the outer subsites are less restrictive. CcGH16-3 is one of a handful of algal enzymes characterized with a specificity for a polysaccharide unknown to be found in their own extracellular matrix. This ß-porphyranase activity in a carrageenophyte red alga may provide defense against red algal pathogens or provide a competitive advantage in niche colonization.


Assuntos
Chondrus , Rodófitas , Chondrus/genética , Rodófitas/genética , Polissacarídeos , Glicosídeo Hidrolases , Biologia
3.
Int J Biol Macromol ; 201: 143-157, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968546

RESUMO

Sulfated fucans from brown algae are a heterogeneous group of biologically active molecules. To learn more on their structure and to analyze and exploit their biological activities, there is a growing need to develop reliable and cost effective protocols for their preparation. In the present study, a brown alga Pelvetia canaliculata (Linnaeus) was used as a rich source of sulfated fucans. Sulfated fucan preparation methods included neutral and acidic extractions followed by purification with activated charcoal (AC), polyvinylpolypyrrolidone (PVPP), or cetylpyridinium chloride (CPC). Final products were compared in terms of yield, purity, monosaccharide composition and molecular weight. Acidic extractions provided higher yields compared to neutral ones, whereas the AC purification provided sulfated fucan products with the highest purity. Mass spectrometry analyses were done on oligosaccharides produced by the fucanase MfFcnA from the marine bacterium Mariniflexille fucanivorans. This has provided unique insight into enzyme specificity and the structural characteristics of sulfated fucans.


Assuntos
Phaeophyceae , Peso Molecular , Oligossacarídeos/química , Phaeophyceae/química , Polissacarídeos/química
4.
Glycobiology ; 32(4): 276-288, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-34939127

RESUMO

The extracellular matrix of brown algae represents an abundant source of fucose-containing sulfated polysaccharides (FCSPs). FCSPs include sulfated fucans, essentially composed of fucose, and highly heterogeneous fucoidans, comprising various monosaccharides. Despite a range of potentially valuable biological activities, the structures of FCSPs are only partially characterized and enzymatic tools leading to their deconstruction are rare. Previously, the enzyme MfFcnA was isolated from the marine bacterium Mariniflexile fucanivorans and biochemically characterized as an endo-α-1 â†’ 4-l-fucanase, the first member of glycoside hydrolase family 107. Here, MfFcnA was used as an enzymatic tool to deconstruct the structure of the sulfated fucans from Pelvetia canaliculata (Fucales brown alga). Oligofucans released by MfFcnA at different time points were characterized using mass spectrometry coupled with liquid chromatography and tandem mass spectrometry through Charge Transfer Dissociation. This approach highlights a large diversity in the structures released. In particular, the analyses show the presence of species with less than three sulfates per two fucose residues. They also reveal species with monosaccharides other than fucose and the occurrence of laterally branched residues. Precisely, the lateral branching is either in the form of a hexose accompanied by a trisulfated fucose nearby, or of a side chain of fucoses with a pentose as the branching point on the polymer. Overall, the results indicate that the structure of sulfated fucans from P. canaliculata is more complex than expected. They also reveal the interesting capacity of MfFcnA to accommodate different substrates, leading to structurally diverse oligofucan products that potentially could be screened for bioactivities.


Assuntos
Phaeophyceae , Sulfatos , Oligossacarídeos/química , Polissacarídeos/química
5.
J Phycol ; 57(3): 742-753, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33432598

RESUMO

The haploid-diploid life cycle of the filamentous brown alga Ectocarpus involves alternation between two independent and morphologically distinct multicellular generations, the sporophyte and the gametophyte. Deployment of the sporophyte developmental program requires two TALE homeodomain transcription factors OUROBOROS and SAMSARA. In addition, the sporophyte generation has been shown to secrete a diffusible factor that can induce uni-spores to switch from the gametophyte to the sporophyte developmental program. Here, we determine optimal conditions for production, storage, and detection of this diffusible factor and show that it is a heat-resistant, high molecular weight molecule. Based on a combined approach involving proteomic analysis of sporophyte-conditioned medium and the use of biochemical tools to characterize arabinogalactan proteins, we present evidence that sporophyte-conditioned medium contains AGP epitopes and suggest that the diffusible factor may belong to this family of glycoproteins.


Assuntos
Células Germinativas Vegetais , Phaeophyceae , Haploidia , Plantas , Proteômica
6.
Bio Protoc ; 10(18): e3753, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-33659412

RESUMO

The brown alga Ectocarpus has a haploid-diploid life cycle that involves alternation between two multicellular generations, the sporophyte and the gametophyte. Life cycle generation is not determined by ploidy but by a genetic system that includes two different three amino acid loop extension homeodomain transcription factors called OUROBOROS and SAMSARA. In addition, sporophytes have been shown to secrete a diffusible factor into the medium that can induce gametophyte initial cells to switch from the gametophyte to the sporophyte developmental program. The protocol presented here describes how to produce sporophyte-conditioned medium containing the diffusible sporophyte-inducing factor and how to assay for activity of the factor using a meio-spore-based bioassay. The protocol, which describes how several steps of these procedures can be optimised, will represent a useful tool for future work aimed at characterising the diffusible factor and investigating its mode of action.

7.
Sci Rep ; 9(1): 12956, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506545

RESUMO

Ectocarpus is a filamentous brown alga, which cell wall is composed mainly of alginates and fucans (80%), two non-crystalline polysaccharide classes. Alginates are linear chains of epimers of 1,4-linked uronic acids, ß-D-mannuronic acid (M) and α-L-guluronic acid (G). Previous physico-chemical studies showed that G-rich alginate gels are stiffer than M-rich alginate gels when prepared in vitro with calcium. In order to assess the possible role of alginates in Ectocarpus, we first immunolocalised M-rich or G-rich alginates using specific monoclonal antibodies along the filament. As a second step, we calculated the tensile stress experienced by the cell wall along the filament, and varied it with hypertonic or hypotonic solutions. As a third step, we measured the stiffness of the cell along the filament, using cell deformation measurements and atomic force microscopy. Overlapping of the three sets of data allowed to show that alginates co-localise with the stiffest and most stressed areas of the filament, namely the dome of the apical cell and the shanks of the central round cells. In addition, no major distinction between M-rich and G-rich alginate spatial patterns could be observed. Altogether, these results support that both M-rich and G-rich alginates play similar roles in stiffening the cell wall where the tensile stress is high and exposes cells to bursting, and that these roles are independent from cell growth and differentiation.


Assuntos
Alginatos/metabolismo , Parede Celular/química , Ácidos Hexurônicos/metabolismo , Phaeophyceae/fisiologia , Estresse Mecânico , Resistência à Tração , Parede Celular/metabolismo , Citoesqueleto/fisiologia , Propriedades de Superfície
8.
Proteins ; 87(1): 34-40, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315603

RESUMO

In the marine environment agar degradation is assured by bacteria that contain large agarolytic systems with enzymes acting in various endo- and exo-modes. Agarase A (AgaA) is an endo-glycoside hydrolase of family 16 considered to initiate degradation of agarose. Agaro-oligosaccharide binding at a unique surface binding site (SBS) in AgaA from Zobellia galactanivorans was investigated by computational methods in conjunction with a structure/sequence guided approach of site-directed mutagenesis probed by surface plasmon resonance binding analysis of agaro-oligosaccharides of DP 4-10. The crystal structure has shown that agaro-octaose interacts via H-bonds and aromatic stacking along 7 subsites (L through R) of the SBS in the inactive catalytic nucleophile mutant AgaA-E147S. D271 is centrally located in the extended SBS where it forms H-bonds to galactose and 3,6-anhydrogalactose residues of agaro-octaose at subsites O and P. We propose D271 is a key residue in ligand binding to the SBS. Thus AgaA-E147S/D271A gave slightly decreasing KD values from 625 ± 118 to 468 ± 13 µM for agaro-hexaose, -octaose, and -decaose, which represent 3- to 4-fold reduced affinity compared with AgaA-E147S. Molecular dynamics simulations and interaction analyses of AgaA-E147S/D271A indicated disruption of an extended H-bond network supporting that D271 is critical for the functional SBS. Notably, neither AgaA-E147S/W87A nor AgaA-E147S/W277A, designed to eliminate stacking with galactose residues at subsites O and Q, respectively, were produced in soluble form. W87 and W277 may thus control correct folding and structural integrity of AgaA.


Assuntos
Ácido Aspártico/metabolismo , Flavobacteriaceae/enzimologia , Glicosídeo Hidrolases/metabolismo , Proteínas Mutantes/metabolismo , Mutação , Sefarose/metabolismo , Ácido Aspártico/química , Ácido Aspártico/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Especificidade por Substrato
9.
FEBS J ; 285(22): 4281-4295, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30230202

RESUMO

Sulfated fucans, often denoted as fucoidans, are highly variable cell wall polysaccharides of brown algae, which possess a wide range of bioactive properties with potential pharmaceutical applications. Due to their complex architecture, the structures of algal fucans have until now only been partly determined. Enzymes capable of hydrolyzing sulfated fucans may allow specific release of defined bioactive oligosaccharides and may serve as a tool for structural elucidation of algal walls. Currently, such enzymes include only a few hydrolases belonging to the glycoside hydrolase family 107 (GH107), and little is known about their mechanistics and the substrates they degrade. In this study, we report the identification and recombinant production of three novel GH107 family proteins derived from a marine metagenome. Activity screening against a large substrate collection showed that all three enzymes degraded sulfated fucans from brown algae in the order Fucales. This is in accordance with a hydrolytic activity against α-1,4-fucosidic linkages in sulfated fucans as reported for previous GH107 members. Also, the activity screening gave new indications about the structural differences in brown algal cell walls. Finally, sequence analyses allowed identification of the proposed catalytic residues of the GH107 family. The findings presented here form a new basis for understanding the GH107 family of enzymes and investigating the complex sulfated fucans from brown algae. DATABASE: The assembled metagenome and raw sequence data is available at EMBL-EBI (Study number: PRJEB28480). Sequences of the GH107 fucanases (Fp273, Fp277, and Fp279) have been deposited in GenBank under accessions MH755451-MH755453.


Assuntos
Proteínas de Algas/metabolismo , Anticoagulantes/metabolismo , Parede Celular/metabolismo , Glicosídeo Hidrolases/metabolismo , Metagenoma , Phaeophyceae/enzimologia , Polissacarídeos/metabolismo , Proteínas de Algas/genética , Glicosídeo Hidrolases/genética , Ensaios de Triagem em Larga Escala , Phaeophyceae/genética
10.
Sci Rep ; 8(1): 2500, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29410423

RESUMO

Marine algae are one of the largest sources of carbon on the planet. The microbial degradation of algal polysaccharides to their constitutive sugars is a cornerstone in the global carbon cycle in oceans. Marine polysaccharides are highly complex and heterogeneous, and poorly understood. This is also true for marine microbial proteins that specifically degrade these substrates and when characterized, they are frequently ascribed to new protein families. Marine (meta)genomic datasets contain large numbers of genes with functions putatively assigned to carbohydrate processing, but for which empirical biochemical activity is lacking. There is a paucity of knowledge on both sides of this protein/carbohydrate relationship. Addressing this 'double blind' problem requires high throughput strategies that allow large scale screening of protein activities, and polysaccharide occurrence. Glycan microarrays, in particular the Comprehensive Microarray Polymer Profiling (CoMPP) method, are powerful in screening large collections of glycans and we described the integration of this technology to a medium throughput protein expression system focused on marine genes. This methodology (Double Blind CoMPP or DB-CoMPP) enables us to characterize novel polysaccharide-binding proteins and to relate their ligands to algal clades. This data further indicate the potential of the DB-CoMPP technique to accommodate samples of all biological sources.


Assuntos
Análise em Microsséries/métodos , Plantas/química , Polissacarídeos/análise , Receptores de Superfície Celular/análise , Organismos Aquáticos/química , Clorófitas/química , Escherichia coli , Glicômica/métodos , Phaeophyceae/química , Rodófitas/química
11.
Nat Commun ; 8(1): 1685, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29162826

RESUMO

Macroalgae contribute substantially to primary production in coastal ecosystems. Their biomass, mainly consisting of polysaccharides, is cycled into the environment by marine heterotrophic bacteria using largely uncharacterized mechanisms. Here we describe the complete catabolic pathway for carrageenans, major cell wall polysaccharides of red macroalgae, in the marine heterotrophic bacterium Zobellia galactanivorans. Carrageenan catabolism relies on a multifaceted carrageenan-induced regulon, including a non-canonical polysaccharide utilization locus (PUL) and genes distal to the PUL, including a susCD-like pair. The carrageenan utilization system is well conserved in marine Bacteroidetes but modified in other phyla of marine heterotrophic bacteria. The core system is completed by additional functions that might be assumed by non-orthologous genes in different species. This complex genetic structure may be the result of multiple evolutionary events including gene duplications and horizontal gene transfers. These results allow for an extension on the definition of bacterial PUL-mediated polysaccharide digestion.


Assuntos
Carragenina/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Regulon , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Cristalografia por Raios X , Evolução Molecular , Galactosidases/química , Galactosidases/genética , Galactosidases/metabolismo , Genes Bacterianos , Redes e Vias Metabólicas/genética , Modelos Moleculares , Família Multigênica , Filogenia , Conformação Proteica , RNA Bacteriano/genética , Análise de Sequência de RNA , Especificidade da Espécie
12.
J Biol Chem ; 292(48): 19919-19934, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29030427

RESUMO

Carrageenans are sulfated α-1,3-ß-1,4-galactans found in the cell wall of some red algae that are practically valuable for their gelation and biomimetic properties but also serve as a potential carbon source for marine bacteria. Carbohydrate degradation has been studied extensively for terrestrial plant/bacterial systems, but sulfation is not present in these cases, meaning the marine enzymes used to degrade carrageenans must possess unique features to recognize these modifications. To gain insights into these features, we have focused on κ-carrageenases from two distant bacterial phyla, which belong to glycoside hydrolase family 16 and cleave the ß-1,4 linkage of κ-carrageenan. We have solved the crystal structure of the catalytic module of ZgCgkA from Zobellia galactanivorans at 1.66 Å resolution and compared it with the only other structure available, that of PcCgkA from Pseudoalteromonas carrageenovora 9T (ATCC 43555T). We also describe the first substrate complex in the inactivated mutant form of PcCgkA at 1.7 Å resolution. The structural and biochemical comparison of these enzymes suggests key determinants that underlie the functional properties of this subfamily. In particular, we identified several arginine residues that interact with the polyanionic substrate, and confirmed the functional relevance of these amino acids using a targeted mutagenesis strategy. These results give new insight into the diversity of the κ-carrageenase subfamily. The phylogenetic analyses show the presence of several distinct clades of enzymes that relate to differences in modes of action or subtle differences within the same substrate specificity, matching the hybrid character of the κ-carrageenan polymer.


Assuntos
Metabolismo dos Carboidratos , Flavobacteriaceae/enzimologia , Glicosídeo Hidrolases/metabolismo , Biologia Marinha , Pseudoalteromonas/enzimologia , Catálise , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/classificação , Cinética , Filogenia , Conformação Proteica , Especificidade por Substrato
13.
J Exp Bot ; 67(21): 6089-6100, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27811078

RESUMO

Zygotes from Fucus species have been used extensively to study cell polarization and rhizoid outgrowth, and in this model system cell wall deposition aligns with the establishment of polarity. Monoclonal antibodies are essential tools for the in situ analysis of cell wall glycans, and here we report the characteristics of six monoclonal antibodies to alginates (BAM6-BAM11). The use of these, in conjunction with monoclonal antibodies to brown algal sulfated fucans, has enabled the study of the developmental dynamics of the Fucus zygote cell walls. Young zygotes are spherical and all alginate epitopes are deposited uniformly following cellulose deposition. At germination, sulfated fucans are secreted in the growing rhizoid wall. The redistribution of cell wall epitopes was investigated during treatments that cause reorientation of the growth axis (change in light direction) or disrupt rhizoid development (arabinogalactan-protein-reactive Yariv reagent). Alginate modeling was drastically impaired in the latter, and both treatments cause a redistribution of highly sulfated fucan epitopes. The dynamics of cell wall glycans in this system have been visualized in situ for the first time, leading to an enhanced understanding of the early developmental mechanisms of Fucus species. These sets of monoclonal antibodies significantly extend the available molecular tools for brown algal cell wall studies.


Assuntos
Parede Celular/metabolismo , Fucus/metabolismo , Sementes/metabolismo , Anticorpos Monoclonais/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Fucus/crescimento & desenvolvimento , Germinação/fisiologia , Sementes/crescimento & desenvolvimento
14.
FEBS J ; 283(10): 1863-79, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26959085

RESUMO

UNLABELLED: Laminarin is an abundant brown algal storage polysaccharide. Marine microorganisms, such as Zobellia galactanivorans, produce laminarinases for its degradation, which are important for the processing of this organic matter in the ocean carbon cycle. These laminarinases are often modular, as is the case with ZgLamC which has an N-terminal GH16 module, a central family 6 carbohydrate-binding module (CBM) and a C-terminal PorSS module. To date, no studies have characterized a true marine laminarin-binding CBM6 with its natural carbohydrate ligand. The crystal structure of ZgLamCCBM6 indicates that this CBM has two clefts for binding sugar (variable loop site, VLS; and concave face site, CFS). The ZgLamCCBM6 VLS binds in an exo-manner and the CFS interacts in an endo-manner with laminarin. Isothermal titration calorimetry (ITC) experiments on native and mutant ZgLamCCBM6 confirm that these binding sites have different modes of recognition for laminarin, in agreement with the 'regional model' postulated for CBM6-binding modules. Based on ITC data and structural data, we propose a model of ZgLamCCBM6 interacting with different chains of laminarin in a multivalent manner, forming a complex cross-linked protein-polysaccharide network. DATABASE: PDB code 5FUI.


Assuntos
Glucanos/metabolismo , Polissacarídeos/metabolismo , Calorimetria , Sequência de Carboidratos , Cristalografia por Raios X , Flavobacteriaceae/metabolismo , Glucanos/química , Glucanos/classificação , Glucanos/genética , Ligantes , Biologia Marinha , Mutagênese Sítio-Dirigida , Filogenia , Polissacarídeos/química , Ligação Proteica , Conformação Proteica , Termodinâmica
15.
New Phytol ; 209(4): 1428-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26667994

RESUMO

Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light on the role of AGPs in cell wall sensing and raise questions about the origin and evolution of AGPs in eukaryotes.


Assuntos
Epitopos/metabolismo , Fucus/crescimento & desenvolvimento , Fucus/genética , Mucoproteínas/metabolismo , Sequência de Aminoácidos , Divisão Celular/efeitos da radiação , Parede Celular/metabolismo , Parede Celular/efeitos da radiação , Fucus/efeitos da radiação , Genes de Plantas , Genoma , Indicadores e Reagentes , Luz , Modelos Biológicos , Mucoproteínas/química , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Homologia de Sequência do Ácido Nucleico , Zigoto/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 2): 173-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25664729

RESUMO

Laminarin is a ß-1,3-D-glucan displaying occasional ß-1,6 branches. This storage polysaccharide of brown algae constitutes an abundant source of carbon for marine bacteria such as Zobellia galactanivorans. This marine member of the Bacteroidetes possesses five putative ß-1,3-glucanases [four belonging to glycosyl hydrolase family 16 (GH16) and one to GH64] with various modular architectures. Here, the characterization of the ß-glucanase ZgLamC is reported. The catalytic GH16 module (ZgLamCGH16) was produced in Escherichia coli and purified. This recombinant enzyme has a preferential specificity for laminarin but also a significant activity on mixed-linked glucan (MLG). The structure of an inactive mutant of ZgLamCGH16 in complex with a thio-ß-1,3-hexaglucan substrate unravelled a straight active-site cleft with three additional pockets flanking subsites -1, -2 and -3. These lateral pockets are occupied by a glycerol, an acetate ion and a chloride ion, respectively. The presence of these molecules in the vicinity of the O6 hydroxyl group of each glucose moiety suggests that ZgLamCGH16 accommodates branched laminarins as substrates. Altogether, ZgLamC is a secreted laminarinase that is likely to be involved in the initial step of degradation of branched laminarin, while the previously characterized ZgLamA efficiently degrades unbranched laminarin and oligo-laminarins.


Assuntos
Celulases/química , Celulases/metabolismo , Flavobacteriaceae/enzimologia , Glucanos/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Flavobacteriaceae/química , Flavobacteriaceae/metabolismo , Glucanos/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteoglicanas , Alinhamento de Sequência , Especificidade por Substrato , beta-Glucanas/química , beta-Glucanas/metabolismo
17.
PLoS One ; 10(2): e0118366, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25692870

RESUMO

Cell walls of the brown algae contain a diverse range of polysaccharides with useful bioactivities. The precise structures of the sulfated fucan/fucoidan group of polysaccharides and their roles in generating cell wall architectures and cell properties are not known in detail. Four rat monoclonal antibodies, BAM1 to BAM4, directed to sulfated fucan preparations, have been generated and used to dissect the heterogeneity of brown algal cell wall polysaccharides. BAM1 and BAM4, respectively, bind to a non-sulfated epitope and a sulfated epitope present in the sulfated fucan preparations. BAM2 and BAM3 identified additional distinct epitopes present in the fucoidan preparations. All four epitopes, not yet fully characterised, occur widely within the major brown algal taxonomic groups and show divergent distribution patterns in tissues. The analysis of cell wall extractions and fluorescence imaging reveal differences in the occurrence of the BAM1 to BAM4 epitopes in various tissues of Fucus vesiculosus. In Ectocarpus subulatus, a species closely related to the brown algal model Ectocarpus siliculosus, the BAM4 sulfated epitope was modulated in relation to salinity levels. This new set of monoclonal antibodies will be useful for the dissection of the highly complex and yet poorly resolved sulfated polysaccharides in the brown algae in relation to their ecological and economic significance.


Assuntos
Phaeophyceae/química , Polissacarídeos/isolamento & purificação , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Parede Celular/metabolismo , Cromatografia por Troca Iônica , Mapeamento de Epitopos , Masculino , Phaeophyceae/classificação , Polissacarídeos/química , Ratos , Ratos Wistar , Salinidade
18.
Anal Chem ; 87(2): 1042-9, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25495706

RESUMO

Extreme ultraviolet photon activation tandem mass spectrometry (MS) at 69 nm (18 eV) was used to characterize mixtures of oligo-porphyrans, a class of highly sulfated oligosaccharides. Porphyrans, hybrid polymers whose structures are far from known, continue to provide a challenge for analytical method development. Activation by 18 eV photons led to a rich fragmentation of the oligo-porphyrans, with many cross-ring and glycosidic cleavages. In contrast to multistage MSn strategies such as activated electron photodetachment dissociation, a single step of irradiation by energetic UV of multiply charged anions led to a complete fragmentation of the oligo-porphyrans. In both ionization modes, the sulfate groups were retained on the backbone, which allowed the pattern of these modifications along the porphyran backbone to be described in unprecedented detail. Many structures released by the enzymatic degradation of the porphyran were completely resolved, including isomers. This work extends the existing knowledge of the structure of porphyrans. In addition, it provides a new demonstration of the potential of activation by high-energy photons for the structural analysis of oligosaccharides, even in unseparated mixtures, with a particular focus on sulfated compounds.


Assuntos
Parede Celular/química , Oligossacarídeos/química , Fótons , Porphyra/química , Sefarose/análogos & derivados , Sulfatos/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Íons , Sefarose/química
19.
Appl Environ Microbiol ; 80(16): 4958-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24907332

RESUMO

A metagenomic library was constructed from microorganisms associated with the brown alga Ascophyllum nodosum. Functional screening of this library revealed 13 novel putative esterase loci and two glycoside hydrolase loci. Sequence and gene cluster analysis showed the wide diversity of the identified enzymes and gave an idea of the microbial populations present during the sample collection period. Lastly, an endo-ß-1,4-glucanase having less than 50% identity to sequences of known cellulases was purified and partially characterized, showing activity at low temperature and after prolonged incubation in concentrated salt solutions.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Microbiota , Phaeophyceae/microbiologia , Alga Marinha/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Estabilidade Enzimática , Glicosídeo Hidrolases/metabolismo , Metagenômica , Dados de Sequência Molecular , Filogenia , Cloreto de Sódio/metabolismo
20.
J Biol Chem ; 289(4): 2027-42, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24337571

RESUMO

Laminarinase is commonly used to describe ß-1,3-glucanases widespread throughout Archaea, bacteria, and several eukaryotic lineages. Some ß-1,3-glucanases have already been structurally and biochemically characterized, but very few from organisms that are in contact with genuine laminarin, the storage polysaccharide of brown algae. Here we report the heterologous expression and subsequent biochemical and structural characterization of ZgLamAGH16 from Zobellia galactanivorans, the first GH16 laminarinase from a marine bacterium associated with seaweeds. ZgLamAGH16 contains a unique additional loop, compared with other GH16 laminarinases, which is composed of 17 amino acids and gives a bent shape to the active site cleft of the enzyme. This particular topology is perfectly adapted to the U-shaped conformation of laminarin chains in solution and thus explains the predominant specificity of ZgLamAGH16 for this substrate. The three-dimensional structure of the enzyme and two enzyme-substrate complexes, one with laminaritetraose and the other with a trisaccharide of 1,3-1,4-ß-d-glucan, have been determined at 1.5, 1.35, and 1.13 Å resolution, respectively. The structural comparison of substrate recognition pattern between these complexes allows the proposition that ZgLamAGH16 likely diverged from an ancestral broad specificity GH16 ß-glucanase and evolved toward a bent active site topology adapted to efficient degradation of algal laminarin.


Assuntos
Proteínas de Bactérias/química , Evolução Molecular , Flavobacteriaceae/enzimologia , Glucana 1,3-beta-Glucosidase/química , Polissacarídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Flavobacteriaceae/genética , Glucana 1,3-beta-Glucosidase/genética , Glucana 1,3-beta-Glucosidase/metabolismo , Glucanos , Polissacarídeos/genética , Polissacarídeos/metabolismo , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA