Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 14: 1140034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274793

RESUMO

Objectives: Cystic fibrosis (CF) is the most prevalent autosomal recessive disorder among Caucasians. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause this pathology. We, therefore, aimed to describe the CFTR mutations and their geographical distribution in Iran. Method: The mutation spectrum for 87 families from all Iranian ethnicities was collected using ARMS PCR, Sanger sequencing, and MLPA. Results: Mutations were identified in 95.8% of cases. This dataset revealed that the most frequent mutations in the Iranian population were F508del, c.1000C>T, c.1397C>G, c.1911delG, and c.1393-1G>A. In addition, we found weak evidence for Turkey being the possible geographical pathway for introducing CFTR mutations into Iran by mapping the frequency of CFTR mutations. Conclusion: Our descriptive results will facilitate the genetic detection and prenatal diagnosis of cystic fibrosis within the Iranian population.

2.
Arch Iran Med ; 24(12): 887-896, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35014236

RESUMO

BACKGROUND: Hemophilia A (HA) is an X-linked recessive bleeding disorder with a high rate of genetic heterogeneity. The present study was conducted on a large cohort of Iranian HA patients and data obtained from databases. METHODS: A total of 622 Iranian HA patients from 329 unrelated families who had been referred to a medical genetics laboratory in Tehran from 2005 to 2019, were enrolled in this retrospective, observational study. Genetic screening of pathogenic variants of the F8 gene was performed using inverse shifting PCR, direct sequencing, and multiplex ligation-dependent amplification (MLPA). Point mutation frequencies in different exons were analyzed for our samples as well as 6031 HA patients whose data were recorded in a database. RESULTS: A total of 144 different pathogenic or likely pathogenic variants including 29 novel variants were identified. A strategy to decrease costs of genetic testing of HA was suggested based on this finding. CONCLUSION: This study provides comprehensive information on F8 pathogenic/likely pathogenic variants in Iranian HA patients which improves the spectrum of causative mutations and can be helpful to clinicians and medical geneticists in counseling and molecular diagnosis of HA.


Assuntos
Hemofilia A , Fator VIII/genética , Hemofilia A/genética , Humanos , Irã (Geográfico) , Mutação , Estudos Retrospectivos
3.
J Inherit Metab Dis ; 41(6): 1159-1167, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30159852

RESUMO

Phenylketonuria (PKU) is an inborn error of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene, characterized by intellectual deficit and neuropsychiatric complications in untreated patients with estimated frequency of about one in 10,000 to 15,000 live births. PAH deficiency can be detected by neonatal screening in nearly all cases with hyperphenylalaninemia on a heel prick blood spot. Molecular testing of the PAH gene can then be performed in affected family members. Herein, we report molecular study of 635 patients genetically diagnosed with PKU from all ethnicities in Iran. The disease-causing mutations were found in 611 (96.22%) of cases. To the best of our knowledge, this is the most comprehensive molecular genetics study of PKU in Iran, identifying 100 distinct mutations in the PAH gene, including 15 previously unreported mutations. Interestingly, we found unique cases of PKU with uniparental disomy, germline mosaicism, and coinheritance with another Mendelian single-gene disorder that provides new insights for improving the genetic counseling, prenatal diagnosis (PND), and/or pre-implantation genetic diagnosis (PGD) for the inborn error of metabolism group of disorders.


Assuntos
Consanguinidade , Predisposição Genética para Doença , Fenilalanina Hidroxilase/genética , Fenilcetonúrias/genética , Genética Populacional , Humanos , Padrões de Herança , Irã (Geográfico) , Mutação
4.
Eur Arch Otorhinolaryngol ; 272(9): 2255-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25012701

RESUMO

GJB2 mutation analysis is used routinely as a first step in genetic testing for autosomal recessive non-syndromic sensorineural hearing loss. Although most GJB2 mutations can be detected by sequencing of the exon 2 of this gene, a prevalent splice mutation, c.-23+1G>A (IVS1+1G>A), is not usually included in the analyzed region. In this study, we have developed an ARMS-PCR strategy for detection of this mutation among Iranian deaf individuals. A total of 418 Iranian individuals with hearing loss consistent with autosomal recessive non-syndromic sensorineural hearing loss based on audiological test result, medical history, physical examination and pedigree of the family, were included in this study. c.35delG and c.-23+1G>A mutations were detected by using ARMS-PCR. Direct sequencing of the exon 2 of the GJB2 gene was performed for mutation analysis of the coding region of this gene. Among 418 investigated cases, a total of 81 patients (~19.4 %) with biallelic pathogenic mutations in the GJB2 gene and 13 cases with only one pathogenic mutant allele were identified. The total allele frequencies of the two most frequent mutations, c.35delG and c.-23+1G>A, among mutated alleles were found to be around 59 and 15.7 %, respectively. High frequency of the c.35delG and c.-23+1G>A mutations among Iranian deaf individuals shows the importance of developing rapid and cost-effective methods for primary mutation screening methods before performing direct sequencing.


Assuntos
Conexinas/genética , Perda Auditiva Neurossensorial/genética , Mutação , Conexina 26 , Frequência do Gene , Humanos , Irã (Geográfico)
5.
Res Microbiol ; 164(4): 293-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23275075

RESUMO

The expression of four aflatoxin (AF) biosynthetic pathway genes (aflD, aflO, aflP and aflQ) was evaluated in 24 Aspergillus flavus strains isolated from soils of pistachio orchards, with the aim of rapidly and accurately differentiating toxigenic from non-toxigenic strains. The amounts of AFB1 produced by 20 aflatoxigenic strains varied from 1.25 to 321.56 ng/mg fungal dry weights in YES medium. RT-PCR results showed that transcription of the four genes was not always correlated with AF production. The expression pattern of aflO and aflQ, however, was found to be well correlated with the amounts of AFB1 produced when strains were arbitrarily classified into two types: type I, comprised of strains producing ≥30 ng/mg; and type II, low (≤30 ng/mg) and non-AF producers. The present study suggests that, under specific growth conditions, the expression pattern of aflatoxin biosynthetic pathway genes such as aflO and aflQ can be used to infer the AF-producing capability of A. flavus strains.


Assuntos
Aflatoxinas/biossíntese , Aspergillus flavus/genética , Vias Biossintéticas/genética , Genes Fúngicos , Pistacia/crescimento & desenvolvimento , Microbiologia do Solo , Aflatoxinas/genética , Aspergillus flavus/isolamento & purificação , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase em Tempo Real
6.
Folia Microbiol (Praha) ; 57(1): 27-36, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22167340

RESUMO

In the present study, 193 Aspergillus strains were isolated from a total of 100 soil samples of pistachio orchards, which all of them were identified as Aspergillus flavus as the most abundant species of Aspergillus section Flavi existing in the environment. Approximately 59%, 81%, and 61% of the isolates were capable of producing aflatoxins (AFs), cyclopiazonic acid (CPA), and sclerotia, respectively. The isolates were classified into four chemotypes (I to IV) based on the ability to produce AFs and CPA. The resulting dendrogram of random amplified polymorphic DNA (RAPD) analysis of 24 selected A. flavus isolates demonstrated the formation of two separate clusters. Cluster 1 contained both aflatoxigenic and non-aflatoxigenic isolates (17 isolates), whereas cluster 2 comprised only aflatoxigenic isolates (7 isolates). All the isolates of cluster 2 produced significantly higher levels of AFs than those of cluster 1 and the isolates that produced both AFB(1) and AFB(2) were found only in cluster 2. RAPD genotyping allowed the differentiation of A. flavus from Aspergillus parasiticus as a closely related species within section Flavi. The present study has provided for the first time the relevant information on distribution and genetic diversity of different A. flavus populations from nontoxigenic to highly toxigenic enable to produce hazardous amounts of AFB(1) and CPA in soils of pistachio orchards. These fungi, either toxigenic or not-toxigenic, should be considered as potential threats for agriculture and public health.


Assuntos
Aflatoxinas/metabolismo , Aspergillus/isolamento & purificação , Aspergillus/metabolismo , Variação Genética , Microbiologia do Solo , Aspergillus/classificação , Aspergillus/genética , Irã (Geográfico) , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/microbiologia , Dados de Sequência Molecular , Filogenia
7.
Folia Microbiol (Praha) ; 56(6): 527-34, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22083786

RESUMO

In the present study, genetic diversity and mycotoxin profiles of Aspergillus flavus isolated from air (indoors and outdoors), levels (surfaces), and soils of five hospitals in Southwest Iran were examined. From a total of 146 Aspergillus colonies, 63 isolates were finally identified as A. flavus by a combination of colony morphology, microscopic criteria, and mycotoxin profiles. No Aspergillus parasiticus was isolated from examined samples. Chromatographic analyses of A. flavus isolates cultured on yeast extract-sucrose broth by tip culture method showed that approximately 10% and 45% of the isolates were able to produce aflatoxin B(1) (AFB(1)) and cyclopiazonic acid (CPA), respectively. Around 40% of the isolates produced sclerotia on Czapek-Dox agar. The isolates were classified into four chemotypes based on the ability to produce AF and CPA that majority of them (55.5%) belonged to chemotype IV comprising non-mycotoxigenic isolates. Random amplified polymorphic DNA (RAPD) profiles generated by a combination of four selected primers were used to assess genetic relatedness of 16 selected toxigenic and non-toxigenic isolates. The resulting dendrogram demonstrated the formation of two separate clusters for the A. flavus comprised both mycotoxigenic and non-toxigenic isolates in a random distribution. The obtained results in this study showed that RAPD profiling is a promising and efficient tool to determine intra-specific genetic variation among A. flavus populations from hospital environments. A. flavus isolates, either toxigenic or non-toxigenic, should be considered as potential threats for hospitalized patients due to their obvious role in the etiology of nosocomial aspergillosis.


Assuntos
Microbiologia do Ar , Aspergillus flavus/isolamento & purificação , Equipamentos e Provisões Hospitalares/microbiologia , Micotoxinas/metabolismo , Microbiologia do Solo , Aspergillus flavus/classificação , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Hospitais , Irã (Geográfico) , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA