Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 136(2): 25, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781491

RESUMO

KEY MESSAGE: A QTL associated with BPH resistance at the early seedling stage was identified on chromosome 3. Functional Bph14 in Rathu Heenati was associated with BPH resistance at the early seedling stage. Brown planthopper (BPH; Nilaparvata lugens Stål) is considered the most important rice pest in many Asian countries. Several BPH resistance genes have previously been identified. However, there are few reports of genes specific for BPH resistance at the early seedling stage, a crucial stage for direct-seeding cultivation. In this study, we performed a QTL-seq analysis using two bulks (20 F2 lines in each bulk) of the F2 population (n = 300) derived from a cross of Rathu Heenati (RH) × HCS-1 to identify QTL/genes associated with BPH resistance at the early seedling stage. An important QTL was identified on chromosome 3 and Bph14 was identified as a potential candidate gene based on the differences in gene expression and sequence variation when compared with the two parents. All plants in the resistant bulks possessed the functional Bph14 from RH and all plants in the susceptible bulk and HCS-1 contained a large deletion (2703 bp) in Bph14. The functional Bph14 gene of RH appears to be important for BPH resistance at the early seedling stage of rice and could be used in conjunction with other BPH resistance genes in rice breeding programs that confer resistance to BPH at the early and later growth stages.


Assuntos
Hemípteros , Oryza , Animais , Humanos , Masculino , Genes de Plantas , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Plântula/genética
2.
J Genet ; 1012022.
Artigo em Inglês | MEDLINE | ID: mdl-35221310

RESUMO

Rice blast disease is found worldwide leading to economic losses. Use of resistance gene is effective to improve rice resistance variety. Therefore, to deploy genomic regions harbouring resistance genes, a population of 587 F2:6 recombinant inbred lines (RILs) was developed from a cross between Jao Hom Nin, a Thai black rice variety with broad-spectrum resistance to blast disease, and Kao Dawk Mali 105, a susceptible Thai jasmine variety. The RILs were challenged with 17 blast isolates collected from Thailand and Laos PDR. Quantitative trait locus analysis identified genomic regions associated with broad-spectrum quantitative resistance (qBSRLs) and racespecific quantitative resistance (qRSRLs). Two qBSRLs were detected on chromosomes 1 and 11, and two qRSRLs were detected on chromosomes 8 and 12. The two qBSRLs were introgressed into two new genetic backgrounds through marker-assisted selection (MAS). Twelve breeding lines were tested for their spectra of resistance against 35 blast isolates. The results indicated that both qBSRLs were effective in new genetic backgrounds. The flanking markers and qBSRLs identified in the large mapping population showed high selection accuracy and effectiveness, suggesting the routine deployment of MAS technique in rice breeding programmes.


Assuntos
Oryza , Locos de Características Quantitativas , Ascomicetos , Resistência à Doença/genética , Patrimônio Genético , Oryza/genética , Oryza/microbiologia , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética
3.
Phytochemistry ; 194: 113044, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34864385

RESUMO

Understanding brown planthopper (BPH) resistance mechanism will expedite selective breeding of better BPH resistant lines of rice (Oryza sativa). Metabolic responses during BPH infestation derived from wound stress imposed by insect feeding, comparing with mechanical piercing will provide an insight into resistance mechanism in rice. Therefore, this study aimed to compare the metabolic responses of needle piercing treatment and BPH feeding treatment in BPH-susceptible (KD) and BPH-resistant (RH) varieties at four different time points (0, 6, 24 and 96 h) using liquid chromatography-high resolution mass spectrometry (LC-HRMS). Phenotypes of RH were not different among the treatments, whereas KD exhibited hopperburn symptom at 96 h post-BPH infestation. Principal component and cluster analyses revealed that metabolite profiles between KD and RH were different in response to both insect and mechanical stimuli. Metabolite profiles of RH under BPH and mechanical treatments at 24 and 96 h were different from the untreated, whereas metabolite profiles of KD after BPH infestation at 24 and 96 h were distinct from needle piercing and no treatment, suggesting that the resistant variety has an ability to adapt and defend both mechanical and insect stimuli. Metabolomics result showed that BPH infestation perturbed purine salvage biosynthesis (e.g., inosine, hypoxanthine) in both varieties, amino acid biosynthesis (e.g., phenylalanine, tryptophan) in KD, while the infestation perturbed lysine metabolism (pipecolic acid) and phenylpropanoid pathway (2-anisic acid) only in RH. BPH and mechanical stimuli perturbed phenylamide only in RH, but not in KD. These findings revealed that different rice varieties utilize different metabolites in response to insect and mechanical stimuli, resulting in different degrees of resistance.


Assuntos
Hemípteros , Oryza , Animais , Metabolômica
4.
Rice (N Y) ; 12(1): 16, 2019 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-30888525

RESUMO

BACKGROUND: The development of rice varieties with broad-spectrum resistance to insect pests is the most promising approach for controlling a fast evolving insect pest such as the brown planthopper (BPH). To cope with rapid evolution, discovering new sources of broad-spectrum resistance genes is the ultimate goal. RESULTS: We used a forward genetics approach to identify BPH resistance genes in rice (Oryza sativa L.) using double digest restriction site-associated DNA sequencing (ddRADseq) for quantitative trait loci (QTL)-seq of the backcross inbred lines (BILs) derived from a cross between the BPH-susceptible cultivar KDML105 and BPH-resistant cultivar Rathu Heenati (RH). Two major genomic regions, located between 5.78-7.78 Mb (QBPH4.1) and 15.22-17.22 Mb (QBPH4.2) on rice chromosome 4, showed association with BPH resistance in both pooled BILs and individual highly resistant and susceptible BILs. The two most significant candidate resistance genes located within the QBPH4.1 and QBPH4.2 windows were lectin receptor kinase 3 (OsLecRK3) and sesquiterpene synthase 2 (OsSTPS2), respectively. Functional markers identified in these two genes were used for reverse screening 9323 lines of the fast neutron (FN)-mutagenized population developed from the BPH-susceptible, purple-pigmented, indica cultivar Jao Hom Nin (JHN). Nineteen FN-mutagenized lines (0.24%) carried mutations in the OsLecRK3 and/or OsSTPS2 gene. Among these mutant lines, only one highly resistant line (JHN4) and three moderately resistant lines (JHN09962, JHN12005, and JHN19525) were identified using three active, local BPH populations. The 19 mutant lines together with three randomly selected mutant lines, which did not harbor mutations in the two target genes, were screened further for mutations in six known BPH resistance genes including BPH9, BPH14, BPH18, BPH26, BPH29, and BPH32. Multiple single nucleotide polymorphisms (SNPs) and insertion-deletion (Indel) mutations were identified, which formed gene-specific haplotype patterns (HPs) essential for broad-spectrum resistance to BPH in both BILs and JHN mutant populations. CONCLUSION: On the one hand, HPs of OsLekRK2-3, OsSTPS2, and BPH32 determined broad-spectrum resistance to BPH among RH-derived BILs. On the other hand, in the JHN mutant population, BPH9 together with seven significant genes on chromosome 4 played a crucial role in BPH resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA