Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768394

RESUMO

Plasma trimethylamine n-oxide (TMAO) concentration increases in responses to feeding TMAO, choline, phosphatidylcholine, L-carnitine, and betaine but it is unknown whether concentrations change following a mixed macronutrient tolerance test (MMTT) with limited amounts of TMAO precursors. In this proof-of-concept study, we provided healthy female and male adults (n = 97) ranging in age (18-65 years) and BMI (18-44 kg/m2) a MMTT (60% fat, 25% sucrose; 42% of a standard 2000 kilo calorie diet) and recorded their metabolic response at fasting and at 30 min, 3 h, and 6 h postprandially. We quantified total exposure to TMAO (AUC-TMAO) and classified individuals by the blood draw at which they experienced their maximal TMAO concentration (TMAO-response groups). We related AUC-TMAO to the 16S rRNA microbiome, to two SNPs in the exons of the FMO3 gene (rs2266782, G>A, p.Glu158Lys; and rs2266780, A>G, p.Glu308Gly), and to a priori plasma metabolites. We observed varying TMAO responses (timing and magnitude) and identified a sex by age interaction such that AUC-TMAO increased with age in females but not in males (p-value = 0.0112). Few relationships between AUC-TMAO and the fecal microbiome and FMO3 genotype were identified. We observed a strong correlation between AUC-TMAO and TNF-α that depended on TMAO-response group. These findings promote precision nutrition and have important ramifications for the eating behavior of adults who could benefit from reducing TMAO exposure, and for understanding factors that generate plasma TMAO.


Assuntos
Betaína , Colina , Humanos , Masculino , Adulto , Feminino , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , RNA Ribossômico 16S , Colina/metabolismo , Metilaminas/metabolismo , Nutrientes
2.
Nutrients ; 14(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405993

RESUMO

TMAO is elevated in individuals with cardiometabolic diseases, but it is unknown whether the metabolite is a biomarker of concern in healthy individuals. We conducted a cross-sectional study in metabolically healthy adults aged 18-66 years with BMI 18-44 kg/m2 and assessed the relationship between TMAO and diet, the fecal microbiome, and cardiometabolic risk factors. TMAO was measured in fasted plasma samples by liquid chromatography mass spectrometry. The fecal microbiome was assessed by 16S ribosomal RNA sequencing and recent food intake was captured by multiple ASA24 dietary recalls. Endothelial function was assessed via EndoPAT. Descriptive statistics were computed by fasting plasma TMAO tertiles and evaluated by ANOVA and Tukey's post-hoc test. Multiple linear regression was used to assess the relationship between plasma TMAO and dietary food intake and metabolic health parameters. TMAO concentrations were not associated with average intake of animal protein foods, fruits, vegetables, dairy, or grains. TMAO was related to the fecal microbiome and the genera Butyribrio, Roseburia, Coprobaciullus, and Catenibacterium were enriched in individuals in the lowest versus the highest TMAO tertile. TMAO was positively associated with α-diversity and compositional differences were identified between groups. TMAO was not associated with classic cardiovascular risk factors in the healthy cohort. Similarly, endothelial function was not related to fasting TMAO, whereas the inflammatory marker TNF-α was significantly associated. Fasting plasma TMAO may not be a metabolite of concern in generally healthy adults unmedicated for chronic disease. Prospective studies in healthy individuals are necessary.


Assuntos
Metilaminas , Microbiota , Animais , Biomarcadores , Estudos Transversais , Dieta , Humanos , Estudos Prospectivos , Estados Unidos
3.
Genetics ; 218(3)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34849860

RESUMO

Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to ∼25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting variants. Finally, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility.


Assuntos
Dieta , Fígado/metabolismo , MicroRNAs/genética , Herança Multifatorial , RNA Mensageiro/genética , Animais , Genótipo , Hibridização Genética , Camundongos , MicroRNAs/metabolismo , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Transcriptoma
4.
Genetics ; 216(1): 241-259, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32763908

RESUMO

Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation (cis or trans) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a trans-acting factor, compared to ∼25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, cis-acting variants affecting mRNA or miRNA expression explain more phenotypic variance than trans-acting variants. Lastly, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility.


Assuntos
Dieta , Variação Genética , Hibridização Genética , Fígado/metabolismo , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Variação Biológica da População , Camundongos , MicroRNAs/metabolismo , Fenótipo , Locos de Características Quantitativas , RNA Mensageiro/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA