Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Elife ; 132024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347802

RESUMO

The HIV-1 capsid has emerged as a tractable target for antiretroviral therapy. Lenacapavir, developed by Gilead Sciences, is the first capsid-targeting drug approved for medical use. Here, we investigate the effect of lenacapavir on HIV capsid stability and uncoating. We employ a single particle approach that simultaneously measures capsid content release and lattice persistence. We demonstrate that lenacapavir's potent antiviral activity is predominantly due to lethal hyperstabilisation of the capsid lattice and resultant loss of compartmentalisation. This study highlights that disrupting capsid metastability is a powerful strategy for the development of novel antivirals.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Capsídeo , Proteínas do Capsídeo , Fármacos Anti-HIV/farmacologia
2.
Alzheimers Dement ; 20(2): 1013-1025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849026

RESUMO

INTRODUCTION: Signatures of a type-I interferon (IFN-I) response are observed in the post mortem brain in Alzheimer's disease (AD) and other tauopathies. However, the effect of the IFN-I response on pathological tau accumulation remains unclear. METHODS: We examined the effects of IFN-I signaling in primary neural culture models of seeded tau aggregation and P301S-tau transgenic mouse models in the context of genetic deletion of the IFN-I receptor (IFNAR). RESULTS: Polyinosinic:polycytidylic acid (PolyI:C), a synthetic analog of viral nucleic acids, evoked a potent cytokine response that enhanced seeded aggregation of tau in an IFN-I-dependent manner. IFN-I-induced vulnerability could be pharmacologically prevented and was intrinsic to neurons. Aged P301S-tau mice lacking Ifnar1 had significantly reduced tau pathology compared to mice with intact IFN signaling. DISCUSSION: We identify a critical role for IFN-I in potentiating tau aggregation. IFN-I is therefore identified as a potential therapeutic target in AD and other tauopathies. HIGHLIGHTS: Type-I IFN (IFN-I) promotes seeded tau aggregation in neural cultures. IFNAR inhibition prevents IFN-I driven sensitivity to tau aggregation. IFN-I driven vulnerability is intrinsic to neurons. Tau pathology is significantly reduced in aged P301S-tau mice lacking IFNAR.


Assuntos
Doença de Alzheimer , Interferon Tipo I , Tauopatias , Camundongos , Animais , Proteínas tau/genética , Interferon Tipo I/uso terapêutico , Tauopatias/patologia , Camundongos Transgênicos , Doença de Alzheimer/patologia , Modelos Animais de Doenças
3.
PNAS Nexus ; 2(12): pgad403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38077689

RESUMO

Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.

4.
Nat Commun ; 14(1): 7093, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925433

RESUMO

Human antigen R (HuR) is a ubiquitously expressed RNA-binding protein, which functions as an RNA regulator. Overexpression of HuR correlates with high grade tumours and poor patient prognosis, implicating it as an attractive therapeutic target. However, an effective small molecule antagonist to HuR for clinical use remains elusive. Here, a single domain antibody (VHH) that binds HuR with low nanomolar affinity was identified and shown to inhibit HuR binding to RNA. This VHH was used to engineer a TRIM21-based biological PROTAC (bioPROTAC) that could degrade endogenous HuR. Significantly, HuR degradation reverses the tumour-promoting properties of cancer cells in vivo by altering the HuR-regulated proteome, highlighting the benefit of HuR degradation and paving the way for the development of HuR-degrading therapeutics. These observations have broader implications for degrading intractable therapeutic targets, with bioPROTACs presenting a unique opportunity to explore targeted-protein degradation through a modular approach.


Assuntos
Proteína Semelhante a ELAV 1 , Neoplasias , Quimera de Direcionamento de Proteólise , Humanos , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , RNA , Proteínas de Ligação a RNA/metabolismo
5.
Am J Hematol ; 98(9): 1425-1435, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37497888

RESUMO

SLN124, an N-acetylgalactosamine conjugated 19-mer short interfering RNA, is being developed to treat iron-loading anemias (including beta-thalassemia and myelodysplastic syndromes) and myeloproliferative neoplasms (polycythemia vera). Through hepatic targeting and silencing of the TMPRSS6 gene, SLN124 increases endogenous hepcidin synthesis. This is the first clinical report of an siRNA targeting a component of iron homeostasis. This first-in-human, phase 1 study assessed the safety, tolerability, pharmacokinetics, and pharmacodynamics of single ascending doses of SLN124 (1.0, 3.0, and 4.5 mg/kg) in healthy volunteers. Twenty-four participants were randomized in three sequential cohorts of eight subjects, each to receive a single dose of either SLN124 or placebo (6:2 randomization), administered subcutaneously. There were no serious or severe adverse events, or discontinuations due to adverse events, and most treatment-emergent adverse events were mild, including transient mild injection site reactions, resolving without intervention. SLN124 was rapidly absorbed, with a median tmax of 4-5 h across all treatment groups, and largely eliminated from plasma by 48 h. Plasma concentrations increased in a greater than dose proportional fashion between treatment groups. In all SLN124 groups, a dose-related effect was observed across iron metabolism markers, and across erythroid markers, SLN124 resulted in increased plasma hepcidin levels, peaking around Day 29, and consequent dose-related sustained reductions in plasma iron and transferrin saturation with decreased reticulocyte production, MCHC, and MCV. Results suggest duration of action lasting up to 56 days after a single SLN124 dose, on hepcidin and hematological parameters of iron metabolism (serum iron and TSAT).


Assuntos
Anemia Ferropriva , Ferro , Humanos , Hepcidinas/genética , RNA Interferente Pequeno/genética , Voluntários Saudáveis , Anemia Ferropriva/tratamento farmacológico , Método Duplo-Cego
6.
J Mol Biol ; 435(11): 168037, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37330292

RESUMO

The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.


Assuntos
HIV-1 , Ácido Fítico , Montagem de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Proteínas do Capsídeo/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/metabolismo , Mutação , Peptídeos/metabolismo , Ácido Fítico/metabolismo , Vírion/genética , Vírion/metabolismo
7.
Nat Commun ; 14(1): 3583, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328472

RESUMO

COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Animais , Cricetinae , Camundongos , Antivirais/farmacologia , Peptídeos/farmacologia , Anticorpos , Mesocricetus , Camundongos Transgênicos , Glicoproteína da Espícula de Coronavírus/genética
8.
Proc Natl Acad Sci U S A ; 120(16): e2220557120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040417

RESUMO

The mature HIV-1 capsid protects the viral genome and interacts with host proteins to travel from the cell periphery into the nucleus. To achieve this, the capsid protein, CA, constructs conical capsids from a lattice of hexamers and pentamers, and engages in and then relinquishes multiple interactions with cellular proteins in an orchestrated fashion. Cellular host factors including Nup153, CPSF6, and Sec24C engage the same pocket within CA hexamers. How CA assembles pentamers and hexamers of different curvatures, how CA oligomerization states or curvature might modulate host-protein interactions, and how binding of multiple cofactors to a single site is coordinated, all remain to be elucidated. Here, using single-particle cryoEM, we have determined the structure of the mature HIV-1 CA pentamer and hexamer from conical CA-IP6 polyhedra to ~3 Å resolution. We also determined structures of hexamers in the context of multiple lattice curvatures and number of pentamer contacts. Comparison of these structures, bound or not to host protein peptides, revealed two structural switches within HIV-1 CA that modulate peptide binding according to CA lattice curvature and whether CA is hexameric or pentameric. These observations suggest that the conical HIV-1 capsid has different host-protein binding properties at different positions on its surface, which may facilitate cell entry and represent an evolutionary advantage of conical morphology.


Assuntos
Capsídeo , HIV-1 , Capsídeo/metabolismo , Proteínas do Capsídeo/química , HIV-1/genética , Ligação Proteica , Citoplasma/metabolismo
9.
Nat Commun ; 14(1): 2160, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061529

RESUMO

TRIM proteins are the largest family of E3 ligases in mammals. They include the intracellular antibody receptor TRIM21, which is responsible for mediating targeted protein degradation during Trim-Away. Despite their importance, the ubiquitination mechanism of TRIM ligases has remained elusive. Here we show that while Trim-Away activation results in ubiquitination of both ligase and substrate, ligase ubiquitination is not required for substrate degradation. N-terminal TRIM21 RING ubiquitination by the E2 Ube2W can be inhibited by N-terminal acetylation, but this doesn't prevent substrate ubiquitination nor degradation. Instead, uncoupling ligase and substrate degradation prevents ligase recycling and extends functional persistence in cells. Further, Trim-Away degrades substrates irrespective of whether they contain lysines or are N-terminally acetylated, which may explain the ability of TRIM21 to counteract fast-evolving pathogens and degrade diverse substrates.


Assuntos
Lisina , Ubiquitina-Proteína Ligases , Animais , Lisina/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Mamíferos/metabolismo
10.
Science ; 379(6639): 1336-1341, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36996217

RESUMO

Aggregates of the protein tau are proposed to drive pathogenesis in neurodegenerative diseases. Tau can be targeted by using passively transferred antibodies (Abs), but the mechanisms of Ab protection are incompletely understood. In this work, we used a variety of cell and animal model systems and showed that the cytosolic Ab receptor and E3 ligase TRIM21 (T21) could play a role in Ab protection against tau pathology. Tau-Ab complexes were internalized to the cytosol of neurons, which enabled T21 engagement and protection against seeded aggregation. Ab-mediated protection against tau pathology was lost in mice that lacked T21. Thus, the cytosolic compartment provides a site of immunotherapeutic protection, which may help in the design of Ab-based therapies in neurodegenerative disease.


Assuntos
Anticorpos Monoclonais , Imunização Passiva , Ribonucleoproteínas , Tauopatias , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas tau , Animais , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Citosol/metabolismo , Modelos Animais de Doenças , Receptores Fc , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas tau/imunologia , Tauopatias/terapia , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
EMBO Rep ; 24(5): e56275, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36970882

RESUMO

HIV-1 uses inositol hexakisphosphate (IP6) to build a metastable capsid capable of delivering its genome into the host nucleus. Here, we show that viruses that are unable to package IP6 lack capsid protection and are detected by innate immunity, resulting in the activation of an antiviral state that inhibits infection. Disrupting IP6 enrichment results in defective capsids that trigger cytokine and chemokine responses during infection of both primary macrophages and T-cell lines. Restoring IP6 enrichment with a single mutation rescues the ability of HIV-1 to infect cells without being detected. Using a combination of capsid mutants and CRISPR-derived knockout cell lines for RNA and DNA sensors, we show that immune sensing is dependent upon the cGAS-STING axis and independent of capsid detection. Sensing requires the synthesis of viral DNA and is prevented by reverse transcriptase inhibitors or reverse transcriptase active-site mutation. These results demonstrate that IP6 is required to build capsids that can successfully transit the cell and avoid host innate immune sensing.


Assuntos
Capsídeo , Infecções por HIV , Humanos , Capsídeo/metabolismo , Interações Hospedeiro-Patógeno , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo
12.
J Biosci Bioeng ; 135(4): 331-340, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36709084

RESUMO

This study aimed to determine the impact of human endometrial stem cells (EnSCs) and titanium oxide nanoparticles (TiO2 NPs) on dental pulp repair and regeneration in an animal model through dentine development and tissue regeneration. The EnSCs were put on a three-dimensional (3D) chitosan scaffold containing TiO2 NPs after obtaining and purifying the collagenase enzyme. Pulps were exposed on the maxillary left first molar of all rats followed by direct pulp capping with the experimental scaffolds, as follows. Groups were: 1, control group without any treatment; 2, chitosan group (CS); 3, chitosan group with stem cells (CS/SCs); 4, chitosan group with stem cells and TiO2 NPs (CS/EnSCs/TiO2). Glass ionomer was used as a sealant in all groups. The teeth were extracted and histologically evaluated after 8 weeks. The quality and amount of dentine in the CS/EnSCs/TiO2 group were higher than in the other groups. The combination of EnSCs with TiO2 NPs and 3D chitosan scaffolds had a synergistic effect on each other, evidencing increased speed and quality of dentine formation. Using EnSCs with TiO2 NPs on a 3D chitosan scaffold can be a suitable combination for direct pulp capping and dentine regeneration in a rat molar tooth model.


Assuntos
Quitosana , Humanos , Ratos , Masculino , Animais , Quitosana/farmacologia , Ratos Wistar , Hidrogéis/farmacologia , Polpa Dentária , Células-Tronco , Alicerces Teciduais
13.
Nat Struct Mol Biol ; 30(3): 370-382, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36624347

RESUMO

HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.


Assuntos
HIV-1 , HIV-1/metabolismo , Capsídeo/metabolismo , Montagem de Vírus , Proteínas do Capsídeo/metabolismo , Ácido Fítico/metabolismo , Vírion
14.
Sci Rep ; 12(1): 17286, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241663

RESUMO

Cellular biology occurs through myriad interactions between diverse molecular components, many of which assemble in to specific complexes. Various techniques can provide a qualitative survey of which components are found in a given complex. However, quantitative analysis of the absolute number of molecules within a complex (known as stoichiometry) remains challenging. Here we provide a novel method that combines fluorescence microscopy and statistical modelling to derive accurate molecular counts. We have devised a system in which batches of a given biomolecule are differentially labelled with spectrally distinct fluorescent dyes (label A or B), and mixed such that B-labelled molecules are vastly outnumbered by those with label A. Complexes, containing this component, are then simply scored as either being positive or negative for label B. The frequency of positive complexes is directly related to the stoichiometry of interaction and molecular counts can be inferred by statistical modelling. We demonstrate this method using complexes of Adenovirus particles and monoclonal antibodies, achieving counts that are in excellent agreement with previous estimates. Beyond virology, this approach is readily transferable to other experimental systems and, therefore, provides a powerful tool for quantitative molecular biology.


Assuntos
Corantes Fluorescentes , Modelos Estatísticos , Anticorpos Monoclonais , Microscopia de Fluorescência
15.
Nat Microbiol ; 7(11): 1762-1776, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36289397

RESUMO

Of the 13 known independent zoonoses of simian immunodeficiency viruses to humans, only one, leading to human immunodeficiency virus (HIV) type 1(M) has become pandemic, causing over 80 million human infections. To understand the specific features associated with pandemic human-to-human HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS and TRIM5-mediated antiviral responses. We applied phylogenetic and X-ray crystallography structural analyses to identify differences between pandemic and non-pandemic HIV capsids. We found that genetic reversal of two specific amino acid adaptations in HIV-1(M) enables activation of TRIM5, cGAS and innate immune responses. We propose a model in which the parental lineage of pandemic HIV-1(M) evolved a capsid that prevents cGAS and TRIM5 triggering, thereby allowing silent replication in myeloid cells. We hypothesize that this capsid adaptation promotes human-to-human spread through avoidance of innate immune response activation.


Assuntos
Infecções por HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Humanos , Filogenia , Vírus da Imunodeficiência Símia/metabolismo , Capsídeo/metabolismo , HIV-1/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Infecções por HIV/epidemiologia , Infecções por HIV/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
mBio ; 13(5): e0234622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36098403

RESUMO

Microscopy is one of the few techniques that can directly observe the HIV-1 capsid as it traverses the cell. However, an extrinsic or intrinsic label is needed to facilitate detection and this can perturb capsid behavior. Now, S. Schifferdecker, V. Zila, T. G. Muller, V. Sakin, et al. (mBio:e0195922, 2022, https://journals.asm.org/doi/10.1128/mbio.01959-22) have developed an ingenious direct labeling technology that uses genetic code expansion and click chemistry to produce infectious viruses whose capsids are labeled with only a single modified amino acid. Using this new system, together with electron tomography, the authors demonstrate that the capsid remains intact during its transport into the nucleus of T cells, supporting a late model of uncoating immediately before integration. Combining direct-labeled capsids with fluorescent nonstructural viral proteins or host cofactors promises to be hugely enabling for future studies. Moreover, the potential to install a bio-orthogonal label site specifically in the capsid is likely to have exciting applications beyond imaging.


Assuntos
Capsídeo , HIV-1 , Capsídeo/metabolismo , HIV-1/genética , HIV-1/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Proteínas Virais/metabolismo , Código Genético , Aminoácidos/metabolismo
17.
Viruses ; 14(8)2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35893676

RESUMO

TRIM7 catalyzes the ubiquitination of multiple substrates with unrelated biological functions. This cross-reactivity is at odds with the specificity usually displayed by enzymes, including ubiquitin ligases. Here we show that TRIM7's extreme substrate promiscuity is due to a highly unusual binding mechanism, in which the PRYSPRY domain captures any ligand with a C-terminal helix that terminates in a hydrophobic residue followed by a glutamine. Many of the non-structural proteins found in RNA viruses contain C-terminal glutamines as a result of polyprotein cleavage by 3C protease. This viral processing strategy generates novel substrates for TRIM7 and explains its ability to inhibit Coxsackie virus and norovirus replication. In addition to viral proteins, cellular proteins such as glycogenin have evolved C-termini that make them a TRIM7 substrate. The 'helix-ΦQ' degron motif recognized by TRIM7 is reminiscent of the N-end degron system and is found in ~1% of cellular proteins. These features, together with TRIM7's restricted tissue expression and lack of immune regulation, suggest that viral restriction may not be its physiological function.


Assuntos
Infecções por Caliciviridae , Glutamina , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteases Virais 3C , Enterovirus , Humanos , Norovirus , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/genética
18.
Am J Trop Med Hyg ; 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35576946

RESUMO

Soil-transmitted helminth (STH) infections are highly prevalent in many developing countries, affecting the poorest and most deprived communities. We conducted school-based surveys among children studying in first to fifth standard in government schools in the Indian States of Chhattisgarh, Telangana, and Tripura to estimate the prevalence and intensity of STH infections during November 2015 and January 2016. We adopted a two-stage cluster sampling design, with a random selection of districts within each agro-climatic zone in the first stage. In the second stage, government primary schools were selected by probability proportional to size method from the selected districts. We collected information about demographic details, water, sanitation, and hygiene (WASH) characteristics and stool samples from the school children. Stool samples were tested using Kato-Katz method. Stool samples from 3,313 school children (Chhattisgarh: 1,442, Telangana: 1,443, and Tripura: 428) were examined. The overall prevalence of any STH infection was 80.2% (95% confidence interval [CI]: 73.3-85.7) in Chhattisgarh, 60.7% (95% CI: 53.8-67.2) in Telangana, and 59.8% (95% CI: 49.0-69.7) in Tripura. Ascaris lumbricoides was the most prevalent STH infection in all three states. Most of the STH infections were of light intensity. Our study findings indicate that STH infections were highly prevalent among the school children in Chhattisgarh, Telangana, and Tripura, indicating the need for strengthening STH control program in these states. The prevalence estimates from the survey would serve as a baseline for documenting the impact of the National Deworming Day programs in these states.

19.
Cell Rep ; 39(5): 110776, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508140

RESUMO

Assemblies of tau can transit between neurons, seeding aggregation in a prion-like manner. To accomplish this, tau must cross cell-limiting membranes, a process that is poorly understood. Here, we establish assays for the study of tau entry into the cytosol as a phenomenon distinct from uptake, in real time, and at physiological concentrations. The entry pathway of tau is cell type specific and, in neurons, highly sensitive to cholesterol. Depletion of the cholesterol transporter Niemann-Pick type C1 or extraction of membrane cholesterol renders neurons highly permissive to tau entry and potentiates seeding even at low levels of exogenous tau assemblies. Conversely, cholesterol supplementation reduces entry and almost completely blocks seeded aggregation. Our findings establish entry as a rate-limiting step to seeded aggregation and demonstrate that dysregulated cholesterol, a feature of several neurodegenerative diseases, potentiates tau aggregation by promoting entry of tau assemblies into the cell interior.


Assuntos
Doença de Alzheimer , Príons , Doença de Alzheimer/metabolismo , Colesterol/metabolismo , Citosol/metabolismo , Humanos , Neurônios/metabolismo , Príons/metabolismo , Proteínas tau/metabolismo
20.
Sci Immunol ; 7(70): eabj1640, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486676

RESUMO

Humans have four IgG antibody subclasses that selectively or differentially engage immune effector molecules to protect against infections. Although IgG1 has been studied in detail and is the subclass of most approved antibody therapeutics, increasing evidence indicates that IgG3 is associated with enhanced protection against pathogens. Here, we report that IgG3 has superior capacity to mediate intracellular antiviral immunity compared with the other subclasses due to its uniquely extended and flexible hinge region, which facilitates improved recruitment of the cytosolic Fc receptor TRIM21, independently of Fc binding affinity. TRIM21 may also synergize with complement C1/C4-mediated lysosomal degradation via capsid inactivation. We demonstrate that this process is potentiated by IgG3 in a hinge-dependent manner. Our findings reveal differences in how the four IgG subclasses mediate intracellular immunity, knowledge that may guide IgG subclass selection and engineering of antiviral antibodies for prophylaxis and therapy.


Assuntos
Antivirais , Imunoglobulina G , Anticorpos Antivirais , Proteínas do Sistema Complemento , Humanos , Receptores Fc
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA