Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
Br J Haematol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867615

RESUMO

Immune responses to primary COVID-19 vaccination were investigated in 58 patients with follicular lymphoma (FL) as part of the PETReA trial of frontline therapy (EudraCT 2016-004010-10). COVID-19 vaccines (BNT162b2 or ChAdOx1) were administered before, during or after cytoreductive treatment comprising rituximab (depletes B cells) and either bendamustine (depletes CD4+ T cells) or cyclophosphamide-based chemotherapy. Blood samples obtained after vaccine doses 1 and 2 (V1, V2) were analysed for antibodies and T cells reactive to the SARS-CoV-2 spike protein using the Abbott Architect and interferon-gamma ELISpot assays respectively. Compared to 149 healthy controls, patients with FL exhibited lower antibody but preserved T-cell responses. Within the FL cohort, multivariable analysis identified low pre-treatment serum IgA levels and V2 administration during induction or maintenance treatment as independent determinants of lower antibody and higher T-cell responses, and bendamustine and high/intermediate FLIPI-2 score as additional determinants of a lower antibody response. Several clinical scenarios were identified where dichotomous immune responses were estimated with >95% confidence based on combinations of predictive variables. In conclusion, the immunogenicity of COVID-19 vaccines in FL patients is influenced by multiple disease- and treatment-related factors, among which B-cell depletion showed differential effects on antibody and T-cell responses.

2.
eNeurologicalSci ; 35: 100502, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38770222

RESUMO

A case-control study of sporadic amyotrophic lateral sclerosis (ALS) in a mountainous village in the French Alps discovered an association of cases with a history of eating wild fungi (false morels) collected locally and initially identified and erroneously reported as Gyromitra gigas. Specialist re-examination of dried specimens of the ALS-associated fungi demonstrated they were members of the G. esculenta group, namely G. venenata and G. esculenta, species that have been reported to contain substantially higher concentrations of gyromitrin than present in G. gigas. Gyromitrin is metabolized to monomethylhydrazine, which is responsible not only for the acute oral toxic and neurotoxic properties of false morels but also has genotoxic potential with proposed mechanistic relevance to the etiology of neurodegenerative disease. Most ALS patients had a slow- or intermediate-acetylator phenotype predicted by N-acetyltransferase-2 (NAT2) genotyping, which would increase the risk for neurotoxic and genotoxic effects of gyromitrin metabolites.

3.
mBio ; 15(6): e0058224, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38651867

RESUMO

The impacts of microsporidia on host individuals are frequently subtle and can be context dependent. A key example of the latter comes from a recently discovered microsporidian symbiont of Daphnia, the net impact of which was found to shift from negative to positive based on environmental context. Given this, we hypothesized low baseline virulence of the microsporidian; here, we investigated the impact of infection on hosts in controlled conditions and the absence of other stressors. We also investigated its phylogenetic position, ecology, and host range. The genetic data indicate that the symbiont is Ordospora pajunii, a newly described microsporidian parasite of Daphnia. We show that O. pajunii infection damages the gut, causing infected epithelial cells to lose microvilli and then rupture. The prevalence of this microsporidian could be high (up to 100% in the lab and 77% of adults in the field). Its overall virulence was low in most cases, but some genotypes suffered reduced survival and/or reproduction. Susceptibility and virulence were strongly host-genotype dependent. We found that North American O. pajunii were able to infect multiple Daphnia species, including the European species Daphnia longispina, as well as Ceriodaphnia spp. Given the low, often undetectable virulence of this microsporidian and potentially far-reaching consequences of infections for the host when interacting with other pathogens or food, this Daphnia-O. pajunii symbiosis emerges as a valuable system for studying the mechanisms of context-dependent shifts between mutualism and parasitism, as well as for understanding how symbionts might alter host interactions with resources. IMPORTANCE: The net outcome of symbiosis depends on the costs and benefits to each partner. Those can be context dependent, driving the potential for an interaction to change between parasitism and mutualism. Understanding the baseline fitness impact in an interaction can help us understand those shifts; for an organism that is generally parasitic, it should be easier for it to become a mutualist if its baseline virulence is relatively low. Recently, a microsporidian was found to become beneficial to its Daphnia hosts in certain ecological contexts, but little was known about the symbiont (including its species identity). Here, we identify it as the microsporidium Ordospora pajunii. Despite the parasitic nature of microsporidia, we found O. pajunii to be, at most, mildly virulent; this helps explain why it can shift toward mutualism in certain ecological contexts and helps establish O. pajunii is a valuable model for investigating shifts along the mutualism-parasitism continuum.


Assuntos
Daphnia , Especificidade de Hospedeiro , Filogenia , Simbiose , Animais , Daphnia/microbiologia , Virulência , Microsporídios/genética , Microsporídios/patogenicidade , Microsporídios/fisiologia , Microsporídios/classificação , Microsporídios não Classificados/genética , Microsporídios não Classificados/patogenicidade , Microsporídios não Classificados/classificação , Microsporídios não Classificados/fisiologia
4.
Curr Biol ; 34(7): 1469-1478.e6, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38490202

RESUMO

The global panzootic lineage (GPL) of the pathogenic fungus Batrachochytrium dendrobatidis (Bd) has caused severe amphibian population declines, yet the drivers underlying the high frequency of GPL in regions of amphibian decline are unclear. Using publicly available Bd genome sequences, we identified multiple non-GPL Bd isolates that contain a circular Rep-encoding single-stranded (CRESS)-like DNA virus, which we named Bd DNA virus 1 (BdDV-1). We further sequenced and constructed genome assemblies with long read sequences to find that the virus is integrated into the nuclear genome in some strains. Attempts to cure virus-positive isolates were unsuccessful; however, phenotypic differences between naturally virus-positive and virus-negative Bd isolates suggested that BdDV-1 decreases the growth of its host in vitro but increases the virulence of its host in vivo. BdDV-1 is the first-described CRESS DNA mycovirus of zoosporic true fungi, with a distribution inversely associated with the emergence of the panzootic lineage.


Assuntos
Quitridiomicetos , Micoses , Animais , Virulência/genética , Quitridiomicetos/genética , Micoses/microbiologia , Anfíbios/microbiologia , Genótipo , Vírus de DNA
5.
Curr Opin Microbiol ; 78: 102435, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38387210

RESUMO

Generalist pathogens maintain infectivity in numerous hosts; how this broad ecological niche impacts host-pathogen coevolution remains to be widely explored. Batrachochytrium dendrobatidis (Bd) is a highly generalist pathogenic fungus that has caused devastating declines in hundreds of amphibian species worldwide. This review examines amphibian chytridiomycosis host-pathogen interactions and available evidence for coevolution between Bd and its numerous hosts. We summarize recent evidence showing that Bd genotypes vary in geographic distribution and virulence, and that amphibian species also vary in Bd susceptibility according to their geographic distribution. How much variation can be explained by phenotypic plasticity or genetic differences remains uncertain. Recent research suggests that Bd genotypes display preferences for specific hosts and that some hosts are undergoing evolution as populations rebound from Bd outbreaks. Taken together, these findings suggest the potential for coevolution to occur and illuminate a path for addressing open questions through integrating historical and contemporary genetic data.


Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Quitridiomicetos/genética , Anfíbios/microbiologia , Micoses/veterinária , Micoses/microbiologia , Ecossistema
6.
Nano Lett ; 24(4): 1309-1315, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258741

RESUMO

Electrically percolating nanowire networks are among the most promising candidates for next-generation transparent electrodes. Scientific interest in these materials stems from their intrinsic current distribution heterogeneity, leading to phenomena like percolating pathway rerouting and localized self-heating, which can cause irreversible damage. Without an experimental technique to resolve the current distribution and an underpinning nonlinear percolation model, one relies on empirical rules and safety factors to engineer materials. We introduce Bose-Einstein condensate microscopy to address the longstanding problem of imaging active current flow in 2D materials. We report on performance improvement of this technique whereby observation of dynamic redistribution of current pathways becomes feasible. We show how this, combined with existing thermal imaging methods, eliminates the need for assumptions between electrical and thermal properties. This will enable testing and modeling individual junction behavior and hot-spot formation. Investigating both reversible and irreversible mechanisms will contribute to improved performance and reliability of devices.

7.
Curr Biol ; 33(23): 5147-5159.e7, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052161

RESUMO

Fungi that are edible or fermentative were domesticated through selective cultivation of their desired traits. Domestication is often associated with inbreeding or selfing, which may fix traits other than those under selection, and causes an overall decrease in heterozygosity. A hallucinogenic mushroom, Psilocybe cubensis, was domesticated from its niche in livestock dung for production of psilocybin. It has caused accidental poisonings since the 1940s in Australia, which is a population hypothesized to be introduced from an unknown center of origin. We sequenced genomes of 38 isolates from Australia and compared them with 86 genomes of commercially available cultivars to determine (1) whether P. cubensis was introduced to Australia, and (2) how domestication has impacted commercial cultivars. Our analyses of genome-wide SNPs and single-copy orthologs showed that the Australian population is naturalized, having recovered its effective population size after a bottleneck when it was introduced, and it has maintained relatively high genetic diversity based on measures of nucleotide and allelic diversity. In contrast, domesticated cultivars generally have low effective population sizes and hallmarks of selfing and clonal propagation, including low genetic diversity, low heterozygosity, high linkage disequilibrium, and low allelic diversity of mating-compatibility genes. Analyses of kinship show that most cultivars are founded from related populations. Alleles in the psilocybin gene cluster are identical across most cultivars of P. cubensis with low diversity across coding sequence; however, unique allelic diversity in Australia and some cultivars may translate to differences in biosynthesis of psilocybin and its analogs.


Assuntos
Alucinógenos , Psilocibina , Domesticação , Austrália , Polimorfismo de Nucleotídeo Único , Variação Genética
8.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38108006

RESUMO

Research has shown that undergraduate research experiences can have substantive effects on retaining students in science, technology, engineering and mathematics (STEM). However, it is impossible to provide individual research experiences for every undergraduate student, especially at large universities. Course-based undergraduate research experiences (CUREs) have become a common approach to introduce large numbers of students to research. We investigated whether a one-semester CURE that replaced a traditional introductory biology laboratory course could increase retention in STEM as well as intention to remain in STEM, if the results differed according to demography, and investigated the possible motivational factors that might mediate such an effect. Under the umbrella of the Authentic Research Connection (ARC) program, we used institutional and survey data from nine semesters and compared ARC participants to non-participants, who applied to ARC but either were not randomly selected or were selected but chose not to enroll in an ARC section. We found that ARC had significant effects on demographic groups historically less likely to be retained in STEM: ARC participation resulted in narrowing the gaps in graduation rates in STEM (first vs continuing-generation college students) and in intention to major in STEM [females vs males, Persons Excluded because of Ethnicity or Race (PEERs) vs non-PEERs]. These disproportionate boosts in intending STEM majors among ARC students coincide with their reporting a greater sense of student cohesiveness, retaining more interest in biology, and commenting more frequently that the course provided a useful/valuable learning experience. Our results indicate that CUREs can be a valuable tool for eliminating inequities in STEM participation, and we make several recommendations for further research.

9.
Virulence ; 14(1): 2270252, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37823610

RESUMO

Model organisms are crucial in research as they can provide key insights applicable to other species. This study proposes the use of the amphibian species Hymenochirus boettgeri, widely available through the aquarium trade, as a model organism for the study of chytridiomycosis, a disease caused by the fungus Batrachochytrium dendrobatidis (Bd) and linked to amphibian decline and extinction globally. Currently, no model organisms are used in the study of chytridiomycosis, particularly because of the lack of availability and nonstandardized methods. Thus, laboratories around the world use wild local species to conduct Bd infection experiments, which prevents comparisons between studies and reduces reproducibility. Here, we performed a series of Bd infection assays that showed that H. boettgeri has a dose- and genotype-dependent response, can generalize previous findings on virulence estimates in other species, and can generate reproducible results in replicated experimental conditions. We also provided valuable information regarding H. boettgeri husbandry, including care, housing, reproduction, and heat treatment to eliminate previous Bd infections. Together, our results indicate that H. boettgeri is a powerful and low-ecological-impact system for studying Bd pathogenicity and virulence.


Assuntos
Quitridiomicetos , Micoses , Animais , Batrachochytrium , Reprodutibilidade dos Testes , Anfíbios/microbiologia , Micoses/veterinária , Micoses/microbiologia , Modelos Teóricos
10.
Integr Comp Biol ; 63(4): 960-967, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591671

RESUMO

What are the implications of misunderstanding sex as a binary, and why is it essential for scientists to incorporate a more expansive view of biological sex in our teaching and research? This roundtable will include many of our symposium speakers, including biologists and intersex advocates, to discuss these topics and visibilize the link between ongoing reification of dyadic sex within scientific communities and the social, political, and medical oppression faced by queer, transgender, and especially intersex communities. As with the symposium as a whole, this conversation is designed to bring together empirical research and implementation of equity, inclusion, and justice principles, which are often siloed into separate rooms and conversations at academic conferences. Given the local and national attacks on the rights of intersex individuals and access to medical care and bodily autonomy, this interdisciplinary discussion is both timely and urgent.


Assuntos
Transtornos do Desenvolvimento Sexual , Pessoas Transgênero , Animais , Humanos , Biologia
11.
mBio ; 14(4): e0131323, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37486265

RESUMO

Environmental DNA analyses of fungal communities typically reveal a much larger diversity than can be ascribed to known species. Much of this hidden diversity lies within undescribed fungal lineages, especially the early diverging fungi (EDF). Although these EDF often represent new lineages even at the phylum level, they have never been cultured, making their morphology and ecology uncertain. One of the methods to characterize these uncultured fungi is a single-cell DNA sequencing approach. In this study, we established a large data set of single-cell sequences of EDF by manually isolating and photographing parasitic fungi on various hosts such as algae, protists, and micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota, and three unknown phylum-level clades. Most of our single cells yielded novel sequences distinguished from both described taxa and existing metabarcoding data, indicating an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpected diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by combining photographs of parasitic fungi with phylogenetic analyses, we were able to better understand the ecological function and morphology of many of the branches on the fungal tree of life known only from DNA sequences. IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil and freshwater, comprise species and lineages that have never been isolated into pure culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes over the myriad symbiotic ones that include parasitic and mutualistic relationships with other taxa. In the present study, we aimed to shed light on the ecological function and morphology of the many undescribed lineages of aquatic fungi by individually isolating and sequencing molecular barcodes from 127 cells of host-associated fungi using single-cell sequencing. By adding these sequences and their photographs into the fungal tree, we were able to understand the morphology of reproductive and vegetative structures of these novel fungi and to provide a hypothesized ecological function for them. These individual host-fungal cells revealed themselves to be complex environments despite their small size; numerous samples were hyper-parasitized with other zoosporic fungal lineages such as Rozellomycota.


Assuntos
Quitridiomicetos , Microscopia , Filogenia , Fungos , Quitridiomicetos/genética , DNA Ribossômico/genética , Água Doce/microbiologia , DNA Fúngico/genética , DNA Fúngico/química
12.
Microorganisms ; 11(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513002

RESUMO

The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.

13.
JTCVS Tech ; 19: 30-37, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37324352

RESUMO

Objectives: Aortic valve repair can be limited by inadequate leaflet tissue for proper coaptation. Various kinds of pericardium have been used for cusp augmentation, but most have failed because of tissue degeneration. A more durable leaflet substitute is needed. Methods: In this report, 8 consecutive cases are presented in which autologous ascending aortic tissue was used to augment inadequate native cusps during aortic valve repair. Biologically, aortic wall is a living autologous tissue that could have exceptional durability as a leaflet substitute. Techniques for insertion are described in detail, along with procedural videos. Results: Early surgical outcomes were excellent, with no operative mortalities or complications, and all valves were competent with low valve gradients. Patient follow-up and echocardiograms to a maximum of 8 months' postrepair remain excellent. Conclusions: Because of superior biologic characteristics, aortic wall has the potential to provide a better leaflet substitute during aortic valve repair and to expand patient categories amenable to autologous reconstruction. More experience and follow-up should be generated.

14.
Integr Comp Biol ; 63(4): 922-935, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37218718

RESUMO

Eukaryotes have evolved myriad ways of uniting gametes during sexual reproduction. A repeated pattern is the convergent evolution of a mating system with the fusion of larger gametes with smaller gametes (anisogamy) from that of fusion between morphologically identical gametes (isogamy). In anisogamous species, sexes are defined as individuals that produce only one gamete type. Although sexes abound throughout Eukarya, in fungi there are no biological sexes, because even in anisogamous species, individuals are hermaphroditic and produce both gamete types. For this reason, the term mating types is preferred over sexes, and, thus defined, only individuals of differing mating types can mate (homoallelic incompatibility). In anisogamous fungal species, there is scant evidence that there are more than two mating types, and this may be linked to genetic constraints, such as the use of mating types to determine the inheritance of cytoplasmic genomes. However, the mushroom fungi (Agaricomycetes) stand out as having both large numbers of mating types within a species, which will allow nearly all individuals to be compatible with each other, and reciprocal exchange of nuclei during mating, which will avoid cytoplasmic mixing and cyto-nuclear conflicts. Although the limitation of mating types to two in most fungi is consistent with the cyto-nuclear conflicts model, there are many facets of the Agaricomycete life cycle that also suggest they will demand a high outbreeding efficiency. Specifically, they are mostly obligately sexual and outcrossing, inhabit complex competitive niches, and display broadcast spore dispersal. Subsequently, the Agaricomycete individual pays a high cost to being choosy when encountering a mate. Here, I discuss the costs of mate finding and choice and demonstrate how most fungi have multiple ways of reducing these costs, which can explain why mating types are mostly limited to two per species. Nevertheless, it is perplexing that fungi have not evolved multiple mating types on more occasions nor evolved sexes. The few exceptions to these rules suggest that it is dictated by both molecular and evolutionary constraints.


Assuntos
Evolução Biológica , Reprodução , Humanos , Animais , Células Germinativas , Eucariotos
15.
PLoS Biol ; 21(5): e3001822, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205709

RESUMO

Candida albicans is a frequent colonizer of human mucosal surfaces as well as an opportunistic pathogen. C. albicans is remarkably versatile in its ability to colonize diverse host sites with differences in oxygen and nutrient availability, pH, immune responses, and resident microbes, among other cues. It is unclear how the genetic background of a commensal colonizing population can influence the shift to pathogenicity. Therefore, we examined 910 commensal isolates from 35 healthy donors to identify host niche-specific adaptations. We demonstrate that healthy people are reservoirs for genotypically and phenotypically diverse C. albicans strains. Using limited diversity exploitation, we identified a single nucleotide change in the uncharacterized ZMS1 transcription factor that was sufficient to drive hyper invasion into agar. We found that SC5314 was significantly different from the majority of both commensal and bloodstream isolates in its ability to induce host cell death. However, our commensal strains retained the capacity to cause disease in the Galleria model of systemic infection, including outcompeting the SC5314 reference strain during systemic competition assays. This study provides a global view of commensal strain variation and within-host strain diversity of C. albicans and suggests that selection for commensalism in humans does not result in a fitness cost for invasive disease.


Assuntos
Candida albicans , Simbiose , Humanos , Candida albicans/genética , Fatores de Transcrição/genética , Regulação da Expressão Gênica
16.
Science ; 379(6627): 29-30, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36603085

RESUMO

Many of the world's glaciers will disappear, but quick action will make a difference.

17.
Fungal Genet Biol ; 165: 103769, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36587787

RESUMO

Knowledge of breeding systems and genetic diversity is critical to select and combine desired traits that advance new cultivars in agriculture and horticulture. Mushrooms that produce psilocybin, magic mushrooms, may potentially be used in therapeutic and wellness industries, and stand to benefit from genetic improvement. We studied haploid siblings of Psilocybe subaeruginosa to resolve the genetics behind mating compatibility and advance knowledge of breeding. Our results show that mating in P. subaeruginosa is tetrapolar, with compatibility controlled at a homeodomain locus with one copy each of HD1 and HD2, and a pheromone/receptor locus with four homologs of the receptor gene STE3. An additional two pheromone/receptor loci homologous to STE3 do not appear to regulate mating compatibility. Alleles in the psilocybin gene cluster did not vary among the five siblings and were likely homozygous in the parent. Psilocybe subaeruginosa and its relatives have three copies of PsiH genes but their impact on production of psilocybin and its analogues is unknown. Genetic improvement in Psilocybe will require access to genetic diversity from the centre of origin of different species, identification of genes behind traits, and strategies to avoid inbreeding depression.


Assuntos
Psilocybe , Psilocibina , Psilocybe/genética , Duplicação Gênica , Receptores de Feromônios/genética , Feromônios , Genes Fúngicos Tipo Acasalamento
18.
Mycologia ; 115(1): 1-15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36541902

RESUMO

Gyromitrin (acetaldehyde N-methyl-N-formylhydrazone) and its homologs are deadly mycotoxins produced most infamously by the lorchel (also known as false morel) Gyromitra esculenta, which is paradoxically consumed as a delicacy in some parts of the world. There is much speculation about the presence of gyromitrin in other species of the lorchel family (Discinaceae), but no studies have broadly assessed its distribution. Given the history of poisonings associated with the consumption of G. esculenta and G. ambigua, we hypothesized that gyromitrin evolved in the last common ancestor of these taxa and would be present in their descendants with adaptive loss of function in the nested truffle clade, Hydnotrya. To test this hypothesis, we developed a sensitive analytical derivatization method for the detection of gyromitrin using 2,4-dinitrobenzaldehyde as the derivatization reagent. In total, we analyzed 66 specimens for the presence of gyromitrin over 105 tests. Moreover, we sequenced the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS barcode) and nuc 28S rDNA to assist in species identification and to infer a supporting phylogenetic tree. We detected gyromitrin in all tested specimens from the G. esculenta group as well as G. leucoxantha. This distribution is consistent with a model of rapid evolution coupled with horizontal transfer, which is typical for secondary metabolites. We clarified that gyromitrin production in Discinaceae is both discontinuous and more limited than previously thought. Further research is required to elucidate the gyromitrin biosynthesis gene cluster and its evolutionary history in lorchels.


Assuntos
Acetaldeído , Filogenia , Cromatografia Líquida de Alta Pressão , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética
19.
G3 (Bethesda) ; 12(11)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36179219

RESUMO

The fungal kingdom represents an extraordinary diversity of organisms with profound impacts across animal, plant, and ecosystem health. Fungi simultaneously support life, by forming beneficial symbioses with plants and producing life-saving medicines, and bring death, by causing devastating diseases in humans, plants, and animals. With climate change, increased antimicrobial resistance, global trade, environmental degradation, and novel viruses altering the impact of fungi on health and disease, developing new approaches is now more crucial than ever to combat the threats posed by fungi and to harness their extraordinary potential for applications in human health, food supply, and environmental remediation. To address this aim, the Canadian Institute for Advanced Research (CIFAR) and the Burroughs Wellcome Fund convened a workshop to unite leading experts on fungal biology from academia and industry to strategize innovative solutions to global challenges and fungal threats. This report provides recommendations to accelerate fungal research and highlights the major research advances and ideas discussed at the meeting pertaining to 5 major topics: (1) Connections between fungi and climate change and ways to avert climate catastrophe; (2) Fungal threats to humans and ways to mitigate them; (3) Fungal threats to agriculture and food security and approaches to ensure a robust global food supply; (4) Fungal threats to animals and approaches to avoid species collapse and extinction; and (5) Opportunities presented by the fungal kingdom, including novel medicines and enzymes.


Assuntos
Micoses , Animais , Humanos , Micoses/microbiologia , Fungos , Ecossistema , Canadá , Plantas
20.
Proc Natl Acad Sci U S A ; 119(36): e2116841119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037379

RESUMO

Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane- and cell-wall-associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.


Assuntos
Fungos , Estágios do Ciclo de Vida , Filogenia , Diploide , Fungos/classificação , Fungos/genética , Genoma Fúngico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA