Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 228: 105933, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851593

RESUMO

The underlying threat of new Zika virus (ZIKV) outbreaks remains, as no vaccines or therapies have yet been developed. In vitro research has shown that glycolysis is a key factor to enable sustained ZIKV replication in neuroprogenitors. However, neither in vivo nor clinical investigation of glycolytic modulators as potential therapeutics for ZIKV-related fetal abnormalities has been conducted. Accordingly, we tested the therapeutic potential of metabolic modulators in relevant in vitro systems comprising two pools of neuroprogenitors (NPCs), which resemble early and late stages of pregnancy. Effective doses of metabolic modulators [3.0 µM] dimethyl fumarate (DMF), [3.2 mM] dichloroacetate (DCA), and [6.3 µM] VER-246608 were determined for these cells by their effect on lactate release, pyruvate dehydrogenase (PDH) activity and cell survival. The drugs were used in a 24h pre-treatment and kept throughout ZIKV infection of NPCs. Drug effects and ZIKV replication were assessed at 24- and 56-h post-infection. In early NPCs treated with DMF, DCA and VER-246608, there was a significant reduction in the extracellular release of ZIKV potentially by PDH-mediated increased mitochondrial oxidation of glucose. Out of the three drugs, only DCA was observed to reduce viral replication in late NPCs treated with DCA. Altogether, our findings suggest that reduction of anaerobic glycolysis could be of therapeutic potential against ZIKV-related fetal abnormalities and that clinical translation should consider the use of specific glycolytic modulators over different trimesters.

2.
Nat Nanotechnol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710880

RESUMO

Defending against future pandemics requires vaccine platforms that protect across a range of related pathogens. Nanoscale patterning can be used to address this issue. Here, we produce quartets of linked receptor-binding domains (RBDs) from a panel of SARS-like betacoronaviruses, coupled to a computationally designed nanocage through SpyTag/SpyCatcher links. These Quartet Nanocages, possessing a branched morphology, induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented in the vaccine. Equivalent antibody responses are raised to RBDs close to the nanocage or at the tips of the nanoparticle's branches. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increase the strength and breadth of an otherwise narrow immune response. A Quartet Nanocage including the Omicron XBB.1.5 'Kraken' RBD induced antibodies with binding to a broad range of sarbecoviruses, as well as neutralizing activity against this variant of concern. Quartet nanocages are a nanomedicine approach with potential to confer heterotypic protection against emergent zoonotic pathogens and facilitate proactive pandemic protection.

3.
Harmful Algae ; 126: 102440, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37290887

RESUMO

Cyanobacterial harmful algal blooms (cyanoHABs) dominated by Microcystis spp. have significant public health and economic implications in freshwater bodies around the world. These blooms are capable of producing a variety of cyanotoxins, including microcystins, that affect fishing and tourism industries, human and environmental health, and access to drinking water. In this study, we isolated and sequenced the genomes of 21 primarily unialgal Microcystis cultures collected from western Lake Erie between 2017 and 2019. While some cultures isolated in different years have a high degree of genetic similarity (genomic Average Nucleotide Identity >99%), genomic data show that these cultures also represent much of the breadth of known Microcystis diversity in natural populations. Only five isolates contained all the genes required for microcystin biosynthesis while two isolates contained a previously described partial mcy operon. Microcystin production within cultures was also assessed using Enzyme-Linked Immunosorbent Assay (ELISA) and supported genomic results with high concentrations (up to 900 µg L⁻¹) in cultures with complete mcy operons and no or low toxin detected otherwise. These xenic cultures also contained a substantial diversity of bacteria associated with Microcystis, which has become increasingly recognized as an essential component of cyanoHAB community dynamics. These results highlight the genomic diversity among Microcystis strains and associated bacteria in Lake Erie, and their potential impacts on bloom development, toxin production, and toxin degradation. This culture collection significantly increases the availability of environmentally relevant Microcystis strains from temperate North America.


Assuntos
Cianobactérias , Microbiota , Microcystis , Humanos , Microcystis/genética , Lagos/microbiologia , Cianobactérias/genética , Variação Genética
4.
Biol Open ; 12(4)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093064

RESUMO

Cortical development consists of an orchestrated process in which progenitor cells exhibit distinct fate restrictions regulated by time-dependent activation of energetic pathways. Thus, the hijacking of cellular metabolism by Zika virus (ZIKV) to support its replication may contribute to damage in the developing fetal brain. Here, we showed that ZIKV replicates differently in two glycolytically distinct pools of cortical progenitors derived from human induced pluripotent stem cells (hiPSCs), which resemble the metabolic patterns of quiescence (early hi-NPCs) and immature brain cells (late hi-NPCs) in the forebrain. This differential replication alters the transcription of metabolic genes in both pools of cortical progenitors but solely upregulates the glycolytic capacity of early hi-NPCs. Analysis using Imagestream® revealed that, during early stages of ZIKV replication, in early hi-NPCs there is an increase in lipid droplet abundance and size. This stage of ZIKV replication significantly reduced the mitochondrial distribution in both early and late hi-NPCs. During later stages of ZIKV replication, late hi-NPCs show reduced mitochondrial size and abundance. The finding that there are alterations of cellular metabolism during ZIKV infection which are specific to pools of cortical progenitors at different stages of maturation may help to explain the differences in brain damage over each trimester.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Zika virus/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Encéfalo/metabolismo
5.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865256

RESUMO

Defending against future pandemics may require vaccine platforms that protect across a range of related pathogens. The presentation of multiple receptor-binding domains (RBDs) from evolutionarily-related viruses on a nanoparticle scaffold elicits a strong antibody response to conserved regions. Here we produce quartets of tandemly-linked RBDs from SARS-like betacoronaviruses coupled to the mi3 nanocage through a SpyTag/SpyCatcher spontaneous reaction. These Quartet Nanocages induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented on the vaccine. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increased the strength and breadth of an otherwise narrow immune response. Quartet Nanocages are a strategy with potential to confer heterotypic protection against emergent zoonotic coronavirus pathogens and facilitate proactive pandemic protection.

6.
Mol Ther Nucleic Acids ; 31: 370-382, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36714461

RESUMO

Since its discovery, COVID-19 has rapidly spread across the globe and has had a massive toll on human health, with infection mortality rates as high as 10%, and a crippling impact on the world economy. Despite numerous advances, there remains an urgent need for accurate and rapid point-of-care diagnostic tests and better therapeutic treatment options. To contribute chemically distinct, non-protein-based affinity reagents, we report here the identification of modified DNA-based aptamers that selectively bind to the S1, S2, or receptor-binding domain of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. Several aptamers inhibit the binding of the spike protein to its cell-surface receptor angiotensin-converting enzyme 2 (ACE2) and neutralize authentic SARS-CoV-2 virus in vitro, including all variants of concern. With a high degree of nuclease resistance imparted by the base modifications, these reagents represent a new class of molecules with potential for further development as diagnostics or therapeutics.

7.
Sci Rep ; 12(1): 19454, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376339

RESUMO

There is increasing genetic evidence for the role of microglia in neurodegenerative diseases, including Alzheimer's, Parkinson's, and motor neuron disease. Therefore, there is a need to generate authentic in vitro models to study human microglial physiology. Various methods have been developed using human induced Pluripotent Stem Cells (iPSC) to generate microglia, however, systematic approaches to identify which media components are actually essential for functional microglia are mostly lacking. Here, we systematically assess medium components, coatings, and growth factors required for iPSC differentiation to microglia. Using single-cell RNA sequencing, qPCR, and functional assays, with validation across two labs, we have identified several medium components from previous protocols that are redundant and do not contribute to microglial identity. We provide an optimised, defined medium which produces both transcriptionally and functionally relevant microglia for modelling microglial physiology in neuroinflammation and for drug discovery.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Microglia/metabolismo , Transcriptoma , Diferenciação Celular/genética , Doenças Neurodegenerativas/metabolismo
9.
Front Immunol ; 13: 1035532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439115

RESUMO

Macrophages are key target cells of Zika virus (ZIKV) infection, implicated as a viral reservoir seeding sanctuary sites such as the central nervous system and testes. This rests on the apparent ability of macrophages to sustain ZIKV replication without experiencing cytopathic effects. ZIKV infection of macrophages triggers an innate immune response involving type I interferons (IFN-I), key antiviral cytokines that play a complex role in ZIKV pathogenesis in animal models. To investigate the functional role of the IFN-I response we generated human induced pluripotent stem cell (iPSC)-derived macrophages from a patient with complete deficiency of IFNAR2, the high affinity IFN-I receptor subunit. Accompanying the profound defect of IFN-I signalling in IFNAR2 deficient iPS-macrophages we observed significantly enhanced ZIKV replication and cell death, revealing the inherent cytopathicity of ZIKV towards macrophages. These observations were recapitulated by genetic and pharmacological ablation of IFN-I signalling in control iPS-macrophages and extended to a model of iPS-microglia. Thus, the capacity of macrophages to support noncytolytic ZIKV replication depends on an equilibrium set by IFN-I, suggesting that innate antiviral responses might counterintuitively promote ZIKV persistence via the maintenance of tissue viral reservoirs relevant to pathogenesis.


Assuntos
Células-Tronco Pluripotentes Induzidas , Infecção por Zika virus , Zika virus , Animais , Humanos , Receptor de Interferon alfa e beta/genética , Microglia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Interferons/farmacologia , Antivirais/uso terapêutico
10.
J Immunol Methods ; 511: 113380, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36306825

RESUMO

The SARS-CoV-2 pandemic continues despite the presence of effective vaccines, and novel vaccine approaches may help to reduce viral spread and associated COVID-19 disease. Current vaccine administration modalities are based on systemic needle-administered immunisation which may be suboptimal for mucosal pathogens. Here we demonstrate in a mouse model that small-volume intranasal administration of purified spike (S) protein in the adjuvant polyethylenemine (PEI) elicits robust antibody responses with modest systemic neutralisation activity. Further, we test a heterologous intranasal immunisation regimen, priming with S and boosting with RBD-Fc. Our data identify small volume PEI adjuvantation as a novel platform with potential for protective mucosal vaccine development.


Assuntos
COVID-19 , Vacinas , Camundongos , Animais , Administração Intranasal , SARS-CoV-2 , Polietilenoimina , COVID-19/prevenção & controle
11.
Sci Rep ; 12(1): 12606, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871163

RESUMO

Motor neuron diseases such as amyotrophic lateral sclerosis are primarily characterized by motor neuron degeneration with additional involvement of non-neuronal cells, in particular, microglia. In previous work, we have established protocols for the differentiation of iPSC-derived spinal motor neurons and microglia. Here, we combine both cell lineages and establish a novel co-culture of iPSC-derived spinal motor neurons and microglia, which is compatible with motor neuron identity and function. Co-cultured microglia express key identity markers and transcriptomically resemble primary human microglia, have highly dynamic ramifications, are phagocytically competent, release relevant cytokines and respond to stimulation. Further, they express key amyotrophic lateral sclerosis-associated genes and release disease-relevant biomarkers. This novel and authentic human model system facilitates the study of physiological motor neuron-microglia crosstalk and will allow the investigation of non-cell-autonomous phenotypes in motor neuron diseases such as amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/genética , Técnicas de Cocultura , Humanos , Microglia , Neurônios Motores
12.
Commun Med (Lond) ; 2: 36, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603265

RESUMO

Background: Evaluation of susceptibility to emerging SARS-CoV-2 variants of concern (VOC) requires rapid screening tests for neutralising antibodies which provide protection. Methods: Firstly, we developed a receptor-binding domain-specific haemagglutination test (HAT) to Wuhan and VOC (alpha, beta, gamma and delta) and compared to pseudotype, microneutralisation and virus neutralisation assays in 835 convalescent sera. Secondly, we investigated the antibody response using the HAT after two doses of mRNA (BNT162b2) vaccination. Sera were collected at baseline, three weeks after the first and second vaccinations from older (80-99 years, n = 89) and younger adults (23-77 years, n = 310) and compared to convalescent sera from naturally infected individuals (1-89 years, n = 307). Results: Here we show that HAT antibodies highly correlated with neutralising antibodies (R = 0.72-0.88) in convalescent sera. Home-dwelling older individuals have significantly lower antibodies to the Wuhan strain after one and two doses of BNT162b2 vaccine than younger adult vaccinees and naturally infected individuals. Moverover, a second vaccine dose boosts and broadens the antibody repertoire to VOC in naïve, not previously infected older and younger adults. Most (72-76%) older adults respond after two vaccinations to alpha and delta, but only 58-62% to beta and gamma, compared to 96-97% of younger vaccinees and 68-76% of infected individuals. Previously infected older individuals have, similarly to younger adults, high antibody titres after one vaccination. Conclusions: Overall, HAT provides a surrogate marker for neutralising antibodies, which can be used as a simple inexpensive, rapid test. HAT can be rapidly adaptable to emerging VOC for large-scale evaluation of potentially decreasing vaccine effectiveness.

13.
Front Immunol ; 13: 895488, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591218

RESUMO

Macrophage distribution density is tightly regulated within the body, yet the importance of macrophage crowding during in vitro culture is largely unstudied. Using a human induced pluripotent stem cell (iPSC)-derived macrophage model of tissue resident macrophages, we characterize how increasing macrophage culture density changes their morphology and phenotype before and after inflammatory stimulation. In particular, density drives changes in macrophage inflammatory cytokine and chemokine secretion in both resting and activated states. This density regulated inflammatory state is also evident in blood monocyte derived-macrophages, the human monocytic THP-1 immortalized cell line, and iPSC-derived microglia. Density-dependent changes appear to be driven by a transferable soluble factor, yet the precise mechanism remains unknown. Our findings highlight cell plating density as an important but frequently overlooked consideration of in vitro macrophage research relevant to a variety of fields ranging from basic macrophage cell biology to disease studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Citocinas/metabolismo
15.
Nat Commun ; 12(1): 5061, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404775

RESUMO

The extent to which immune responses to natural infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and immunization with vaccines protect against variants of concern (VOC) is of increasing importance. Accordingly, here we analyse antibodies and T cells of a recently vaccinated, UK cohort, alongside those recovering from natural infection in early 2020. We show that neutralization of the VOC compared to a reference isolate of the original circulating lineage, B, is reduced: more profoundly against B.1.351 than for B.1.1.7, and in responses to infection or a single dose of vaccine than to a second dose of vaccine. Importantly, high magnitude T cell responses are generated after two vaccine doses, with the majority of the T cell response directed against epitopes that are conserved between the prototype isolate B and the VOC. Vaccination is required to generate high potency immune responses to protect against these and other emergent variants.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Anticorpos Monoclonais/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas de Transporte , Epitopos , Humanos , Imunidade , SARS-CoV-2/efeitos dos fármacos , Linfócitos T/imunologia
16.
Stem Cell Reports ; 16(7): 1735-1748, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34171284

RESUMO

Human induced pluripotent stem cells (iPSCs) and macrophages derived from them are increasingly popular tools for research into both infectious and degenerative diseases. However, as the field strives for greater modeling accuracy, it is becoming ever more challenging to justify the use of undefined and proprietary media for the culture of these cells. Here, we describe a defined, serum-free, open-source medium for the differentiation of iPSC-derived macrophages. This medium is equally capable of maintaining these cells compared with commercial alternatives. The macrophages differentiated in this medium display improved terminally differentiated cell characteristics, reduced basal expression of induced antiviral response genes, and improved polarization capacity. We conclude that cells cultured in this medium are an appropriate and malleable model for tissue-resident macrophages, on which future differentiation techniques can be built.


Assuntos
Diferenciação Celular , Meios de Cultura Livres de Soro/farmacologia , Células-Tronco Pluripotentes Induzidas/citologia , Macrófagos/citologia , Biomarcadores/metabolismo , Forma Celular/efeitos dos fármacos , Células Cultivadas , Infecções por HIV/patologia , Homeostase , Humanos , Ativação de Macrófagos , Macrófagos/metabolismo , Macrófagos/virologia , Fenótipo , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/genética , Zika virus/fisiologia
17.
J Vis Exp ; (168)2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33645588

RESUMO

Microglia orchestrate neuroimmune responses in several neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Microglia clear up dead and dying neurons through the process of efferocytosis, a specialized form of phagocytosis. The phagocytosis function can be disrupted by environmental or genetic risk factors that affect microglia. This paper presents a rapid and simple in vitro microscopy protocol for studying microglial efferocytosis in an induced pluripotent stem cell (iPSC) model of microglia, using a human neuroblastoma cell line (SH-SY5Y) labeled with a pH-sensitive dye for the phagocytic cargo. The procedure results in a high yield of dead neuroblastoma cells, which display surface phosphatidylserine, recognized as an "eat-me" signal by phagocytes. The 96-well plate assay is suitable for live-cell time-lapse imaging, or the plate can be successfully fixed prior to further processing and quantified by high-content microscopy. Fixed-cell high-content microscopy enables the assay to be scaled up for screening of small molecule inhibitors or assessing the phagocytic function of genetic variant iPSC lines. While this assay was developed to study phagocytosis of whole dead neuroblastoma cells by iPSC-macrophages, the assay can be easily adapted for other cargoes relevant to neurodegenerative diseases, such as synaptosomes and myelin, and other phagocytic cell types.


Assuntos
Bioensaio/métodos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Neuroblastoma/patologia , Fagocitose , Animais , Morte Celular , Linhagem Celular Tumoral , Análise de Dados , Corantes Fluorescentes/química , Células-Tronco Embrionárias Humanas/citologia , Humanos , Concentração de Íons de Hidrogênio , Células-Tronco Pluripotentes Induzidas/citologia , Controle de Qualidade , Reprodutibilidade dos Testes , Imagem com Lapso de Tempo
18.
FEBS J ; 288(12): 3715-3726, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33185982

RESUMO

In response to viral infections, the innate immune system rapidly activates expression of several interferon-stimulated genes (ISGs), whose protein and metabolic products are believed to directly interfere with the viral life cycle. Here, we argue that biochemical reactions performed by two specific protein products of ISGs modulate central carbon metabolism to support a broad-spectrum antiviral response. We demonstrate that the metabolites generated by metalloenzymes nitric oxide synthase and the radical S-adenosylmethionine (SAM) enzyme RSAD2 inhibit the activity of the housekeeping and glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We discuss that this inhibition is likely to stimulate a range of metabolic and signalling processes to support a broad-spectrum immune response. Based on these analyses, we propose that inhibiting GAPDH in individuals with deteriorated cellular innate immune response like elderly might help in treating viral diseases such as COVID-19.


Assuntos
Antivirais/metabolismo , Carbono/metabolismo , Interferons/metabolismo , Proteínas/metabolismo , S-Adenosilmetionina/metabolismo , Antivirais/farmacologia , COVID-19/prevenção & controle , COVID-19/virologia , Células Cultivadas , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Células HEK293 , Humanos , Imunidade Inata/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
19.
Front Immunol ; 11: 614972, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363548

RESUMO

Human induced Pluripotent Stem Cell (hiPSC) models are a valuable new tool for research into neurodegenerative diseases. Neuroinflammation is now recognized as a key process in neurodegenerative disease and aging, and microglia are central players in this. A plethora of hiPSC-derived microglial models have been published recently to explore neuroinflammation, ranging from monoculture through to xenotransplantation. However, combining physiological relevance, reproducibility, and scalability into one model is still a challenge. We examine key features of the in vitro microglial environment, especially media composition, extracellular matrix, and co-culture, to identify areas for improvement in current hiPSC-microglia models.


Assuntos
Técnicas de Cultura de Células , Microambiente Celular , Células-Tronco Pluripotentes Induzidas/citologia , Microglia/citologia , Modelos Biológicos , Animais , Células Cultivadas , Técnicas de Cocultura , Meios de Cultura/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Xenoenxertos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/transplante , Inflamação/imunologia , Camundongos , Microglia/efeitos dos fármacos , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia
20.
Alzheimers Res Ther ; 12(1): 151, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198789

RESUMO

BACKGROUND: TREM2 is a microglial cell surface receptor, with risk mutations linked to Alzheimer's disease (AD), including R47H. TREM2 signalling via SYK aids phagocytosis, chemotaxis, survival, and changes to microglial activation state. In AD mouse models, knockout (KO) of TREM2 impairs microglial clustering around amyloid and prevents microglial activation. The R47H mutation is proposed to reduce TREM2 ligand binding. We investigated cell phenotypes of the R47H mutant and TREM2 KO in a model of human microglia, and compared their transcriptional signatures, to determine the mechanism by which R47H TREM2 disrupts function. METHODS: We generated human microglia-like iPSC-macrophages (pMac) from isogenic induced pluripotent stem cell (iPSC) lines, with homozygous R47H mutation or TREM2 knockout (KO). We firstly validated the effect of the R47H mutant on TREM2 surface and subcellular localization in pMac. To assess microglial phenotypic function, we measured phagocytosis of dead neurons, cell morphology, directed migration, survival, and LPS-induced inflammation. We performed bulk RNA-seq, comparing significant differentially expressed genes (DEGs; p < 0.05) between the R47H and KO versus WT, and bioinformatically predicted potential upstream regulators of TREM2-mediated gene expression. RESULTS: R47H modified surface expression and shedding of TREM2, but did not impair TREM2-mediated signalling, or gross phenotypes that were dysregulated in the TREM2 KO (phagocytosis, motility, survival). However, altered gene expression in the R47H TREM2 pMac overlapped by 90% with the TREM2 KO and was characterised by dysregulation of genes involved with immunity, proliferation, activation, chemotaxis, and adhesion. Downregulated mediators of ECM adhesion included the vitronectin receptor αVß3, and consequently, R47H TREM2 pMac adhered weakly to vitronectin compared with WT pMac. To counteract these transcriptional defects, we investigated TGFß1, as a candidate upstream regulator. TGFß1 failed to rescue vitronectin adhesion of pMac, although it improved αVß3 expression. CONCLUSIONS: The R47H mutation is not sufficient to cause gross phenotypic defects of human pMac under standard culture conditions. However, overlapping transcriptional defects with TREM2 KO supports the hypothesised partial loss-of-function effects of the R47H mutation. Furthermore, transcriptomics can guide us to more subtle phenotypic defects in the R47H cells, such as reduced cell adhesion, and can be used to predict targets for therapeutic intervention.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Encéfalo , Humanos , Macrófagos , Glicoproteínas de Membrana/genética , Microglia , Fenótipo , Receptores Imunológicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA