Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-16, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38035669

RESUMO

Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.

2.
PLoS One ; 15(11): e0241889, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166324

RESUMO

Raphidocelis subcapitata is one of the most frequently used species for algal growth inhibition tests. Accordingly, many microalgal culture collections worldwide maintain R. subcapitata for distribution to users. All R. subcapitata strains maintained in these collections are derived from the same cultured strain, NIVA-CHL1. However, considering that 61 years have passed since this strain was isolated, we suspected that NIVA-CHL1 in culture collections might have acquired various mutations. In this study, we compared the genome sequences among NIVA-CHL1 from 8 microalgal culture collections and one laboratory in Japan to evaluate the presence of mutations. We found single-nucleotide polymorphisms or indels at 19,576 to 28,212 sites per strain in comparison with the genome sequence of R. subcapitata NIES-35, maintained at the National Institute for Environmental Studies, Tsukuba, Japan. These mutations were detected not only in non-coding but also in coding regions; some of the latter mutations may affect protein function. In growth inhibition test with 3,5-dichlorophenol, EC50 values varied 2.6-fold among the 9 strains. In the ATCC 22662-2 and CCAP 278/4 strains, we also detected a mutation in the gene encoding small-conductance mechanosensitive ion channel, which may lead to protein truncation and loss of function. Growth inhibition test with sodium chloride suggested that osmotic regulation has changed in ATCC 22662-2 and CCAP 278/4 in comparison with NIES-35.


Assuntos
Proteínas de Algas/genética , Clorofíceas/crescimento & desenvolvimento , Clorofíceas/genética , Polimorfismo de Nucleotídeo Único , Cloreto de Sódio/farmacologia , Sequenciamento Completo do Genoma/métodos , Proteínas de Algas/efeitos dos fármacos , Clorofíceas/efeitos dos fármacos , Meios de Cultura/química , Regulação da Expressão Gênica/efeitos dos fármacos , Japão
3.
Sci Data ; 5: 180018, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461516

RESUMO

Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.


Assuntos
Clorofila , Austrália , Bases de Dados Factuais , Ecossistema , Fitoplâncton , Água do Mar
4.
Toxicon ; 138: 68-77, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28797629

RESUMO

The cyanobacterium Dolichospermum circinale (formerly Anabaena circinalis) is responsible for neurotoxic saxitoxin-producing blooms in Australia. Previous studies have reported distinct isolates of toxic D. circinale producing different saxitoxin analogues at varying amounts, but the mechanisms responsible remain poorly understood. To assess the characteristics that may be responsible for this variance, a morphological, molecular and chemical survey of 28 Anabaena isolates was conducted. Morphological characteristics, presence or absence of saxitoxin biosynthetic genes and toxin amount and profile were assessed. The 28 isolates were collected from 16 locations. A correlation between the size of the isolates and its reported toxicity or geographical location could not be found. Molecular screening for the presence of several sxt genes revealed eight out of the 28 strains harboured the sxt gene cluster and all tailoring genes except sxtX. Furthermore, the presence of PSTs was correlated with the presence of the sxt cluster using quantitative pre-column oxidation high performance liquid chromatography with fluorescence detection (HPLC-FLD) and LC-MS/MS. Interestingly, isolates differed in the amount and type of toxins produced, with the eight toxic strains containing the core and tailoring biosynthetic genes while non-toxic strains were devoid of these genes. Moreover, the presence of sxt tailoring genes in toxic strains correlated with the biosynthesis of analogues. A greater understanding of toxin profile/quantity from distinct sites around Australia will aid the management of these at-risk areas and provide information on the molecular control or physiological characteristics responsible for toxin production.


Assuntos
Cianobactérias/genética , Saxitoxina/genética , Austrália , Cianobactérias/classificação , Cianobactérias/citologia , DNA Bacteriano , Toxinas Marinhas/biossíntese , Toxinas Marinhas/genética , Família Multigênica , RNA Ribossômico 16S , Saxitoxina/análogos & derivados , Saxitoxina/biossíntese , Análise de Sequência de DNA , Intoxicação por Frutos do Mar
7.
Sci Data ; 3: 160043, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27328409

RESUMO

There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.


Assuntos
Bases de Dados Factuais , Fitoplâncton , Austrália , Biomassa , Mudança Climática , Ecossistema , Eutrofização
8.
Bioresour Technol ; 130: 261-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23313670

RESUMO

Treatment of wastewater while producing microalgal biomass is receiving ever-increasing attention, particularly in the biofuels arena. In this study, a wastewater chlorophyte isolate, Kirchneriella sp., was tested for its ability to be mass cultivated, utilize nutrients from defined media and wastewater, and produce bioproducts of commercial interest. Growth studies were carried out in various systems at scales up to 60L, with Kirchneriella sp. showing an excellent amenability to being cultured. Biomass concentrations of greater than 1gL(-1) were consistently achieved, nitrogen and phosphorus uptake was rapid, and stable medium-term cultures were maintained. Nitrogen limitation affected biomass yield, fatty acid methyl ester (FAME) yield, and cetane index. In contrast, a low phosphorus condition had no effect. Kirchneriella sp. showed an ability to produce several products of commercial value, including carbohydrate-rich biomass, FAME/biodiesel and the pigments ß,ß-carotene and lutein.


Assuntos
Biomassa , Clorófitas/metabolismo , Microalgas/metabolismo , Águas Residuárias/microbiologia , Microbiologia da Água , Proteínas de Algas/metabolismo , Metabolismo dos Carboidratos , Clorófitas/crescimento & desenvolvimento , Ácidos Graxos/metabolismo , Microalgas/crescimento & desenvolvimento , Microalgas/isolamento & purificação , Pigmentos Biológicos/metabolismo , Estresse Fisiológico
9.
PLoS One ; 7(8): e42780, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916158

RESUMO

BACKGROUND: DNA barcoding offers an efficient way to determine species identification and to measure biodiversity. For dinoflagellates, an ancient alveolate group of about 2000 described extant species, DNA barcoding studies have revealed large amounts of unrecognized species diversity, most of which is not represented in culture collections. To date, two mitochondrial gene markers, Cytochrome Oxidase I (COI) and Cytochrome b oxidase (COB), have been used to assess DNA barcoding in dinoflagellates, and both failed to amplify all taxa and suffered from low resolution. Nevertheless, both genes yielded many examples of morphospecies showing cryptic speciation and morphologically distinct named species being genetically similar, highlighting the need for a common marker. For example, a large number of cultured Symbiodinium strains have neither taxonomic identification, nor a common measure of diversity that can be used to compare this genus to other dinoflagellates. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study was to evaluate the Internal Transcribed Spacer units 1 and 2 (ITS) of the rDNA operon, as a high resolution marker for distinguishing species dinoflagellates in culture. In our study, from 78 different species, the ITS barcode clearly differentiated species from genera and could identify 96% of strains to a known species or sub-genus grouping. 8.3% showed evidence of being cryptic species. A quarter of strains identified had no previous species identification. The greatest levels of hidden biodiversity came from Scrippsiella and the Pfiesteriaceae family, whilst Heterocapsa strains showed a high level of mismatch to their given species name. CONCLUSIONS/SIGNIFICANCE: The ITS marker was successful in confirming species, revealing hidden diversity in culture collections. This marker, however, may have limited use for environmental barcoding due to paralogues, the potential for unidentifiable chimaeras and priming across taxa. In these cases ITS would serve well in combination with other markers or for specific taxon studies.


Assuntos
Código de Barras de DNA Taxonômico , Dinoflagellida/genética , Marcadores Genéticos , Ribossomos/metabolismo , Animais , Dinoflagellida/classificação , Dinoflagellida/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia
10.
PLoS One ; 5(11): e13991, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21085582

RESUMO

BACKGROUND: Dinoflagellates are an ecologically important group of protists with important functions as primary producers, coral symbionts and in toxic red tides. Although widely studied, the natural diversity of dinoflagellates is not well known. DNA barcoding has been utilized successfully for many protist groups. We used this approach to systematically sample known "species", as a reference to measure the natural diversity in three marine environments. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we assembled a large cytochrome c oxidase 1 (COI) barcode database from 8 public algal culture collections plus 3 private collections worldwide resulting in 336 individual barcodes linked to specific cultures. We demonstrate that COI can identify to the species level in 15 dinoflagellate genera, generally in agreement with existing species names. Exceptions were found in species belonging to genera that were generally already known to be taxonomically challenging, such as Alexandrium or Symbiodinium. Using this barcode database as a baseline for cultured dinoflagellate diversity, we investigated the natural diversity in three diverse marine environments (Northeast Pacific, Northwest Atlantic, and Caribbean), including an evaluation of single-cell barcoding to identify uncultivated groups. From all three environments, the great majority of barcodes were not represented by any known cultured dinoflagellate, and we also observed an explosion in the diversity of genera that previously contained a modest number of known species, belonging to Kareniaceae. In total, 91.5% of non-identical environmental barcodes represent distinct species, but only 51 out of 603 unique environmental barcodes could be linked to cultured species using a conservative cut-off based on distances between cultured species. CONCLUSIONS/SIGNIFICANCE: COI barcoding was successful in identifying species from 70% of cultured genera. When applied to environmental samples, it revealed a massive amount of natural diversity in dinoflagellates. This highlights the extent to which we underestimate microbial diversity in the environment.


Assuntos
Biodiversidade , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/genética , Variação Genética , Animais , Oceano Atlântico , Região do Caribe , Análise por Conglomerados , DNA Mitocondrial/química , DNA Mitocondrial/genética , Bases de Dados de Ácidos Nucleicos , Dinoflagellida/classificação , Complexo IV da Cadeia de Transporte de Elétrons/genética , Dados de Sequência Molecular , Oceano Pacífico , Filogenia , Proteínas de Protozoários/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Especificidade da Espécie
11.
FEMS Microbiol Ecol ; 73(1): 83-94, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20491919

RESUMO

The unsaturation ratio of C(37) alkenones (U(37)(K')) produced by haptophyte microalgae such as Emiliania huxleyi is often used as proxy for past sea surface temperature. In this study, 29 bacterial strains were isolated from cultures of the strain E. huxleyi TWP1. Among alkenone-degrading isolates, the strain Dietzia maris sp. S1 appeared to be able to selectively degrade alkenones leading to increases in the palaeoenvironmental proxy U(37)(K') by +0.05 to +0.10 units, which is equivalent to the change seen when the growth temperature is increased by 1.5-3.0 degrees C. This degradation was shown to involve initial epoxidation of the alkenone double bonds presumably by a monooxygenase, which showed a preference for oxidation of the omega29 double bond. Inconsistencies observed in previous studies of the aerobic microbial degradation of alkenones may simply reflect which species of bacteria were present. Our results confirm that intense aerobic bacterial degradative processes can introduce a bias in palaeotemperature reconstructions especially when there is evidence of substantial aerobic bacterial degradation of the deposited organic matter. The widespread occurrence of epoxyalkenones in the marine environment strongly suggests that selective aerobic bacterial degradation could be major source of uncertainty for palaeotemperature estimation.


Assuntos
Bactérias/metabolismo , Clorófitas/microbiologia , Cetonas/metabolismo , Temperatura , Bactérias/genética , Bactérias/isolamento & purificação , DNA Bacteriano/genética , Oxirredução , RNA Ribossômico 16S/genética
12.
Phytochemistry ; 68(6): 913-24, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17258251

RESUMO

Cells of the coccolithophorid Emiliania huxleyi strain CS-57 grown under an atmosphere of air+0.5% CO(2) showed oxidative damage after 10 days growth with concomitant and major changes to the lipid composition. The fatty acid profile was strongly altered and lacked appreciable amounts of the polyunsaturated fatty acids (PUFA: C(18:5), C(18:3) and C(22:6)) typical of healthy cells. Oxidation products of these PUFA could not be detected, but monounsaturated fatty acids proved to be good indicators of oxidative processes. The presence (after NaBH(4)-reduction) of a high proportion of 11-hydroxyoctadec-cis-9-enoic and 8-hydroxyoctadec-cis-9-enoic acids showed that the degradation of oleic acid involved mainly free radical oxidation processes (70-75% autoxidation and 20-25% photooxidation). We also detected large amounts of degradation products of the oxidation product 9,10-epoxyoctadecanoic acid including diols, methoxyhydrins and chlorohydrins. These oxidative effects were found in all the lipid classes examined. Products included significant amounts of chlorophyll side-chain autooxidation products Z- and E-3,7,11,15-tetramethylhexadec-3-ene-1,2-diols and Z-and E-3,7,11,15-tetramethylhexadec-2-ene-1,4-diols, while phytyldiol was present in relatively low proportions. Delta(5)-3beta,7-epimeric unsaturated steroidal diols arising from the autooxidation of the Delta(5) double bond of epi-brassicasterol and minor amounts of Delta(4)-3beta,6-diols were also detected. Long-chain unsaturated ketone (alkenone) content per cell was much higher in the presence of 0.5% CO(2) likely due to carbon storage under these conditions. The proportions of di- and tri-unsaturated alkenones was relatively stable throughout the growth cycle in the absence of additional CO(2), but not when grown with 0.5% CO(2). The detection of characteristic alkenone autoxidation products in cells grown under these latter conditions allowed us to attribute the significant increase in index observed to the involvement of free radical oxidation processes.


Assuntos
Eucariotos/metabolismo , Radicais Livres/química , Lipídeos/química , Boratos/química , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Radicais Livres/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Estrutura Molecular , Oxirredução , Esteróis/química , Esteróis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA