Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cancer Res ; 83(24): 4142-4160, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37801613

RESUMO

Prostate cancer remains the second leading cause of cancer death in men in Western cultures. A deeper understanding of the mechanisms by which prostate cancer cells divide to support tumor growth could help devise strategies to overcome treatment resistance and improve survival. Here, we identified that the mitotic AGC family protein kinase citron kinase (CIT) is a pivotal regulator of prostate cancer growth that mediates prostate cancer cell interphase progression. Increased CIT expression correlated with prostate cancer growth induction and aggressive prostate cancer progression, and CIT was overexpressed in prostate cancer compared with benign prostate tissue. CIT overexpression was controlled by an E2F2-Skp2-p27 signaling axis and conferred resistance to androgen-targeted treatment strategies. The effects of CIT relied entirely on its kinase activity. Conversely, CIT silencing inhibited the growth of cell lines and xenografts representing different stages of prostate cancer progression and treatment resistance but did not affect benign epithelial prostate cells or nonprostatic normal cells, indicating a potential therapeutic window for CIT inhibition. CIT kinase activity was identified as druggable and was potently inhibited by the multikinase inhibitor OTS-167, which decreased the proliferation of treatment-resistant prostate cancer cells and patient-derived organoids. Isolation of the in vivo CIT substrates identified proteins involved in diverse cellular functions ranging from proliferation to alternative splicing events that are enriched in treatment-resistant prostate cancer. These findings provide insights into the regulation of aggressive prostate cancer cell behavior by CIT and identify CIT as a functionally diverse and druggable driver of prostate cancer progression. SIGNIFICANCE: The poorly characterized protein kinase citron kinase is a therapeutic target in prostate cancer that drives tumor growth by regulating diverse substrates, which control several hallmarks of aggressive prostate cancer progression. See related commentary by Mishra et al., p. 4008.


Assuntos
Próstata , Neoplasias da Próstata , Proteínas Quinases , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células , Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais
2.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328625

RESUMO

Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.


Assuntos
Neoplasias Ósseas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Organoides/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Androgênios/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Benzamidas/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transplante Heterólogo , Internalização do Vírus
3.
Sci Adv ; 7(33)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34380625

RESUMO

Despite the development of next-generation antiandrogens, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. Here, we describe a unique semisynthetic bispecific antibody that uses site-specific unnatural amino acid conjugation to combine the potency of a T cell-recruiting anti-CD3 antibody with the specificity of an imaging ligand (DUPA) for prostate-specific membrane antigen. This format enabled optimization of structure and function to produce a candidate (CCW702) with specific, potent in vitro cytotoxicity and improved stability compared with a bispecific single-chain variable fragment format. In vivo, CCW702 eliminated C4-2 xenografts with as few as three weekly subcutaneous doses and prevented growth of PCSD1 patient-derived xenograft tumors in mice. In cynomolgus monkeys, CCW702 was well tolerated up to 34.1 mg/kg per dose, with near-complete subcutaneous bioavailability and a PK profile supporting testing of a weekly dosing regimen in patients. CCW702 is being evaluated in a first in-human clinical trial for men with mCRPC who had progressed on prior therapies (NCT04077021).


Assuntos
Anticorpos Biespecíficos , Neoplasias de Próstata Resistentes à Castração , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/uso terapêutico , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos , Ligantes , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linfócitos T
4.
J Transl Med ; 18(1): 214, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466781

RESUMO

BACKGROUND: Immunotherapeutic regulation of the tumor microenvironment in prostate cancer patients is not understood. Most antibody immunotherapies have not succeeded in prostate cancer. We showed previously that high-risk PCa patients have a higher density of tumor infiltrating B-cells in prostatectomy specimens. In mouse models, anti-CD20 antibody ablation of B-cells delayed PCa regrowth post-treatment. We sought to determine whether neoadjuvant anti-CD20 immunotherapy with rituximab could reduce CD20+ B cell infiltration of prostate tumors in patients. METHODS: An open label, single arm clinical trial enrolled eight high-risk PCa patients to receive one cycle of neoadjuvant rituximab prior to prostatectomy. Eleven clinical specimens with similar characteristics were selected as controls. Treated and control samples were concurrently stained for CD20 and digitally scanned in a blinded fashion. A new method of digital image quantification of lymphocytes was applied to prostatectomy sections of treated and control cases. CD20 density was quantified by a deconvolution algorithm in pathologist-marked tumor and adjacent regions. Statistical significance was assessed by one sided Welch's t-test, at 0.05 level using a gatekeeper strategy. Secondary outcomes included CD3+ T-cell and PD-L1 densities. RESULTS: Mean CD20 density in the tumor regions of the treated group was significantly lower than the control group (p = 0.02). Mean CD3 density in the tumors was significantly decreased in the treated group (p = 0.01). CD20, CD3 and PD-L1 staining primarily occurred in tertiary lymphoid structures (TLS). Neoadjuvant rituximab was well-tolerated and decreased B-cell and T-cell density within high-risk PCa tumors compared to controls. CONCLUSIONS: This is the first study to treat patients prior to surgical prostate removal with an immunotherapy that targets B-cells. Rituximab treatment reduced tumor infiltrating B and T-cell density especially in TLSs, thus, demonstrating inter-dependence between B- and T-cells in prostate cancer and that Rituximab can modify the immune environment in prostate tumors. Future studies will determine who may benefit from using rituximab to improve their immune response against prostate cancer. Trial registration NCT01804712, March 5th, 2013 https://clinicaltrials.gov/ct2/show/NCT01804712?cond=NCT01804712&draw=2&rank=1.


Assuntos
Terapia Neoadjuvante , Neoplasias da Próstata , Animais , Antígeno B7-H1 , Humanos , Linfócitos do Interstício Tumoral , Masculino , Camundongos , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Rituximab/uso terapêutico , Linfócitos T , Microambiente Tumoral
5.
Cancers (Basel) ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392735

RESUMO

BACKGROUND: While critical insights have been gained from evaluating the genomic landscape of metastatic prostate cancer, utilizing this information to inform personalized treatment is in its infancy. We performed a retrospective pilot study to assess the current impact of precision medicine for locally advanced and metastatic prostate adenocarcinoma and evaluate how genomic data could be harnessed to individualize treatment. METHODS: Deep whole genome-sequencing was performed on 16 tumour-blood pairs from 13 prostate cancer patients; whole genome optical mapping was performed in a subset of 9 patients to further identify large structural variants. Tumour samples were derived from prostate, lymph nodes, bone and brain. RESULTS: Most samples had acquired genomic alterations in multiple therapeutically relevant pathways, including DNA damage response (11/13 cases), PI3K (7/13), MAPK (10/13) and Wnt (9/13). Five patients had somatic copy number losses in genes that may indicate sensitivity to immunotherapy (LRP1B, CDK12, MLH1) and one patient had germline and somatic BRCA2 alterations. CONCLUSIONS: Most cases, whether primary or metastatic, harboured therapeutically relevant alterations, including those associated with PARP inhibitor sensitivity, immunotherapy sensitivity and resistance to androgen pathway targeting agents. The observed intra-patient heterogeneity and presence of genomic alterations in multiple growth pathways in individual cases suggests that a precision medicine model in prostate cancer needs to simultaneously incorporate multiple pathway-targeting agents. Our whole genome approach allowed for structural variant assessment in addition to the ability to rapidly reassess an individual's molecular landscape as knowledge of relevant biomarkers evolve. This retrospective oncological assessment highlights the genomic complexity of prostate cancer and the potential impact of assessing genomic data for an individual at any stage of the disease.

6.
J Vis Exp ; (156)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065165

RESUMO

Three-dimensional (3D) culture of organoids from tumor specimens of human patients and patient-derived xenograft (PDX) models of prostate cancer, referred to as patient-derived organoids (PDO), are an invaluable resource for studying the mechanism of tumorigenesis and metastasis of prostate cancer. Their main advantage is that they maintain the distinctive genomic and functional heterogeneity of the original tissue compared to conventional cell lines that do not. Furthermore, 3D cultures of PDO can be used to predict the effects of drug treatment on individual patients and are a step towards personalized medicine. Despite these advantages, few groups routinely use this method in part because of the extensive optimization of PDO culture conditions that may be required for different patient samples. We previously demonstrated that our prostate cancer bone metastasis PDX model, PCSD1, recapitulated the resistance of the donor patient's bone metastasis to anti-androgen therapy. We used PCSD1 3D organoids to characterize further the mechanisms of anti-androgen resistance. Following an overview of currently published studies of PDX and PDO models, we describe a step-by-step protocol for 3D culture of PDO using domed or floating basement membrane (e.g., Matrigel) spheres in optimized culture conditions. In vivo stitch imaging and cell processing for histology are also described. This protocol can be further optimized for other applications including western blot, co-culture, etc. and can be used to explore characteristics of 3D cultured PDO pertaining to drug resistance, tumorigenesis, metastasis and therapeutics.


Assuntos
Neoplasias Ósseas/secundário , Organoides/patologia , Neoplasias da Próstata/patologia , Técnicas de Cultura de Tecidos , Neoplasias Ósseas/patologia , Xenoenxertos , Humanos , Masculino
7.
Asian J Urol ; 3(4): 229-239, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29264191

RESUMO

OBJECTIVE: Bone metastasis occurs in up to 90% of men with advanced prostate cancer and leads to fractures, severe pain and therapy-resistance. Bone metastases induce a spectrum of types of bone lesions which can respond differently to therapy even within individual prostate cancer patients. Thus, the special environment of the bone makes the disease more complicated and incurable. A model in which bone lesions are reproducibly induced that mirrors the complexity seen in patients would be invaluable for pre-clinical testing of novel treatments. The microstructural changes in the femurs of mice implanted with PCSD1, a new patient-derived xenograft from a surgical prostate cancer bone metastasis specimen, were determined. METHODS: Quantitative micro-computed tomography (micro-CT) and histological analyses were performed to evaluate the effects of direct injection of PCSD1 cells or media alone (Control) into the right femurs of Rag2-/-γc-/- male mice. RESULTS: Bone lesions formed only in femurs of mice injected with PCSD1 cells. Bone volume (BV) was significantly decreased at the proximal and distal ends of the femurs (p < 0.01) whereas BV (p < 0.05) and bone shaft diameter (p < 0.01) were significantly increased along the femur shaft. CONCLUSION: PCSD1 cells reproducibly induced bone loss leading to osteolytic lesions at the ends of the femur, and, in contrast, induced aberrant bone formation leading to osteoblastic lesions along the femur shaft. Therefore, the interaction of PCSD1 cells with different bone region-specific microenvironments specified the type of bone lesion. Our approach can be used to determine if different bone regions support more therapy resistant tumor growth, thus, requiring novel treatments.

8.
J Transl Med ; 12: 275, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25278011

RESUMO

INTRODUCTION: Prostate cancer bone metastasis occurs in 50-90% of men with advanced disease for which there is no cure. Bone metastasis leads to debilitating fractures and severe bone pain. It is associated with therapy resistance and rapid decline. Androgen deprivation therapy (ADT) is standard of care for advanced prostate cancer, however, bone metastatic prostate cancer (PCa) often becomes resistant to ADT. There are few pre-clinical models to understand the interaction between the bone microenvironment and prostate cancer. Here we report the castrate resistant growth in the bone niche of PCSD1, a patient-derived intra-femoral xenograft model of prostate bone metastatic cancer treated with the anti-androgen, bicalutamide. METHODS: PCSD1 bone-niche model was derived from a human prostate cancer femoral metastasis resected during hemiarthroplasty and serially transplanted into Rag2(-/-); γ c(-/-) mice intra-femorally (IF) or sub-cutaneously (SC). At 5 weeks post-transplantation mice received bicalutamide or vehicle control for 18 days. Tumor growth of PCSD1 was measured with calipers. PSA expression in PCSD1 xenograft tumors was determined using quantitative RT-PCR and immunohistochemistry. Expression of AR and PSMA, were also determined with qPCR. RESULTS: PCSD1 xenograft tumor growth capacity was 24 fold greater in the bone (intra-femoral, IF) than in the soft tissue (sub-cutaneous, SC) microenvironment. Treatment with the anti-androgen, bicalutamide, inhibited tumor growth in the sub-cutaneous transplantation site. However, bicalutamide was ineffective in suppressing PCSD1 tumor growth in the bone-niche. Nevertheless, bicalutamide treatment of intra-femoral tumors significantly reduced PSA expression (p < = 0.008) and increased AR (p < = 0.032) relative to control. CONCLUSIONS: PCSD1 tumors were castrate resistant when growing in the bone-niche compared to soft tissue. Bicalutamide had little effect on reducing tumor burden in the bone yet still decreased tumor PSA expression and increased AR expression, thus, this model closely recapitulated castrate-resistant, human prostate cancer bone metastatic disease. PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study bone metastatic disease and for pre-clinical drug development of novel therapies for inhibiting therapy resistant prostate cancer growth in the bone-niche.


Assuntos
Neoplasias Ósseas/secundário , Modelos Animais de Doenças , Orquiectomia , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/uso terapêutico , Anilidas/uso terapêutico , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Nitrilas/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Compostos de Tosil/uso terapêutico
9.
Proc Natl Acad Sci U S A ; 111(41): 14776-81, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267627

RESUMO

Prostate cancer (PC) is a slowly progressing malignancy that often responds to androgen ablation or chemotherapy by becoming more aggressive, acquiring a neuroendocrine phenotype, and undergoing metastatic spread. We found that B lymphocytes recruited into regressing androgen-deprived tumors by C-X-C motif chemokine 13 (CXCL13), a chemokine whose expression correlates with clinical severity, play an important role in malignant progression and metastatic dissemination of PC. We now describe how androgen ablation induces CXCL13 expression. In both allografted and spontaneous mouse PC, CXCL13 is expressed by tumor-associated myofibroblasts that are activated on androgen ablation through a hypoxia-dependent mechanism. The same cells produce CXCL13 after chemotherapy. Myofibroblast activation and CXCL13 expression also occur in the normal prostate after androgen deprivation, and CXCL13 is expressed by myofibroblasts in human PC. Hypoxia activates hypoxia-inducible factor 1 (HIF-1) and induces autocrine TGF-ß signaling that promotes myofibroblast activation and CXCL13 induction. In addition to TGF-ß receptor kinase inhibitors, myofibroblast activation and CXCL13 induction are blocked by phosphodiesterase 5 (PDE5) inhibitors. Both inhibitor types and myofibroblast immunodepletion block the emergence of castration-resistant PC in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model of spontaneous metastatic PC with neuroendocrine differentiation.


Assuntos
Quimiocina CXCL13/metabolismo , Progressão da Doença , Hipóxia/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Próstata/patologia , Neoplasias da Próstata/patologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Androgênios/farmacologia , Animais , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos Transgênicos , Miofibroblastos/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
10.
J Transl Med ; 12: 30, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24475900

RESUMO

BACKGROUND: The presence of increased B-cell tumor infiltrating lymphocytes (TILs) was seen in mouse prostate cancer (PCa) but has not been fully documented in human PCa. We, therefore, investigated the density of infiltrating B cells within human PCa utilizing a quantitative computational method. METHODS: Archived radical prostatectomy specimens from 53 patients with known clinical outcome and D'Amico risk category were obtained and immunohistochemically (IHC) stained for the B cell marker, CD20. Slides were reviewed by a genitourinary pathologist who manually delineated the tumoral regions of PCa. Slides were digitally scanned and a computer algorithm quantified the area of CD20 stained B-cells as a measure of B cell density within the outlined regions of prostate cancer (intra-tumoral region), versus extra-tumoral prostate tissue. Correlations were analyzed between B-cell density and demographic and clinical variables, including D'Amico risk groups and disease recurrence. RESULTS: For the entire cohort, the mean intra-tumoral B cell density was higher (3.22 SE = 0.29) than in the extra-tumoral region of each prostatectomy section (2.24, SE = 0.19) (paired t test; P < 0.001). When analyzed according to D'Amico risk group, the intra-tumoral B cell infiltration in low risk (0.0377 vs. 0.0246; p = 0.151) and intermediate risk (0.0260 vs. 0.0214; p = 0.579) patient prostatectomy specimens did not show significantly more B-cells within the PCa tumor. However, patient specimens from the high-risk group (0.0301 vs. 0.0197; p < 0.001) and from those who eventually had PCa recurrence or progression (0.0343 vs. 0.0246; p = 0.019) did show significantly more intra-tumoral CD20+ B-cell staining. Extent of B-cell infiltration in the prostatectomy specimens did not correlate with any other clinical parameters. CONCLUSIONS: Our study shows that higher B-cell infiltration was present within the intra-tumoral PCa regions compared to the extra-tumoral benign prostate tissue regions in prostatectomy sections. For this study we developed a new method to measure B-cells using computer-assisted digitized image analysis. Accurate, consistent quantitation of B-cells in prostatectomy specimens is essential for future clinical trials evaluating the effect of B cell ablating antibodies. The interaction of B-cells and PCa may serve as the basis for new therapeutic targets.


Assuntos
Linfócitos B/imunologia , Linfócitos B/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Animais , Antígenos CD20/metabolismo , Contagem de Células , Demografia , Humanos , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Prostatectomia , Neoplasias da Próstata/cirurgia , Resultado do Tratamento
11.
Cell Stem Cell ; 12(3): 316-28, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23333150

RESUMO

Leukemia stem cells (LSCs) play a pivotal role in the resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) and its progression to blast crisis (BC), in part, through the alternative splicing of self-renewal and survival genes. To elucidate splice-isoform regulators of human BC LSC maintenance, we performed whole-transcriptome RNA sequencing, splice-isoform-specific quantitative RT-PCR (qRT-PCR), nanoproteomics, stromal coculture, and BC LSC xenotransplantation analyses. Cumulatively, these studies show that the alternative splicing of multiple prosurvival BCL2 family genes promotes malignant transformation of myeloid progenitors into BC LSCS that are quiescent in the marrow niche and that contribute to therapeutic resistance. Notably, sabutoclax, a pan-BCL2 inhibitor, renders marrow-niche-resident BC LSCs sensitive to TKIs at doses that spare normal progenitors. These findings underscore the importance of alternative BCL2 family splice-isoform expression in BC LSC maintenance and suggest that the combinatorial inhibition of prosurvival BCL2 family proteins and BCR-ABL may eliminate dormant LSCs and obviate resistance.


Assuntos
Leucemia/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Crise Blástica/metabolismo , Crise Blástica/patologia , Gossipol/análogos & derivados , Gossipol/farmacologia , Humanos , Leucemia/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
PLoS One ; 7(6): e39725, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768113

RESUMO

BACKGROUND: Leukemia initiating cells (LIC) contribute to therapeutic resistance through acquisition of mutations in signaling pathways, such as NOTCH1, that promote self-renewal and survival within supportive niches. Activating mutations in NOTCH1 occur commonly in T cell acute lymphoblastic leukemia (T-ALL) and have been implicated in therapeutic resistance. However, the cell type and context specific consequences of NOTCH1 activation, its role in human LIC regeneration, and sensitivity to NOTCH1 inhibition in hematopoietic microenvironments had not been elucidated. METHODOLOGY AND PRINCIPAL FINDINGS: We established humanized bioluminescent T-ALL LIC mouse models transplanted with pediatric T-ALL samples that were sequenced for NOTCH1 and other common T-ALL mutations. In this study, CD34(+) cells from NOTCH1(Mutated) T-ALL samples had higher leukemic engraftment and serial transplantation capacity than NOTCH1(Wild-type) CD34(+) cells in hematopoietic niches, suggesting that self-renewing LIC were enriched within the NOTCH1(Mutated) CD34(+) fraction. Humanized NOTCH1 monoclonal antibody treatment reduced LIC survival and self-renewal in NOTCH1(Mutated) T-ALL LIC-engrafted mice and resulted in depletion of CD34(+)CD2(+)CD7(+) cells that harbor serial transplantation capacity. CONCLUSIONS: These results reveal a functional hierarchy within the LIC population based on NOTCH1 activation, which renders LIC susceptible to targeted NOTCH1 inhibition and highlights the utility of NOTCH1 antibody targeting as a key component of malignant stem cell eradication strategies.


Assuntos
Células-Tronco Neoplásicas/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Notch1/metabolismo , Regeneração , Transdução de Sinais , Nicho de Células-Tronco , Adolescente , Animais , Anticorpos Monoclonais/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Criança , Pré-Escolar , Humanos , Camundongos , Mutação/genética , Transplante de Neoplasias , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/transplante , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transdução de Sinais/efeitos dos fármacos , Nicho de Células-Tronco/efeitos dos fármacos , Adulto Jovem
13.
J Transl Med ; 9: 185, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035283

RESUMO

UNLABELLED: Prostate cancer metastasizes to bone in the majority of patients with advanced disease leading to painfully debilitating fractures, spinal compression and rapid decline. In addition, prostate cancer bone metastases often become resistant to standard therapies including androgen deprivation, radiation and chemotherapy. There are currently few models to elucidate mechanisms of interaction between the bone microenvironment and prostate cancer. It is, thus, essential to develop new patient-derived, orthotopic models. Here we report the development and characterization of PCSD1 (Prostate Cancer San Diego 1), a novel patient-derived intra-femoral xenograft model of prostate bone metastatic cancer that recapitulates mixed osteolytic and osteoblastic lesions. METHODS: A femoral bone metastasis of prostate cancer was removed during hemiarthroplasty and transplanted into Rag2(-/-);γc(-/-) mice either intra-femorally or sub-cutaneously. Xenograft tumors that developed were analyzed for prostate cancer biomarker expression using RT-PCR and immunohistochemistry. Osteoblastic, osteolytic and mixed lesion formation was measured using micro-computed tomography (microCT). RESULTS: PCSD1 cells isolated directly from the patient formed tumors in all mice that were transplanted intra-femorally or sub-cutaneously into Rag2(-/-);γc(-/-) mice. Xenograft tumors expressed human prostate specific antigen (PSA) in RT-PCR and immunohistochemical analyses. PCSD1 tumors also expressed AR, NKX3.1, Keratins 8 and 18, and AMACR. Histologic and microCT analyses revealed that intra-femoral PCSD1 xenograft tumors formed mixed osteolytic and osteoblastic lesions. PCSD1 tumors have been serially passaged in mice as xenografts intra-femorally or sub-cutaneously as well as grown in culture. CONCLUSIONS: PCSD1 xenografts tumors were characterized as advanced, luminal epithelial prostate cancer from a bone metastasis using RT-PCR and immunohistochemical biomarker analyses. PCSD1 intra-femoral xenografts formed mixed osteoblastic/osteolytic lesions that closely resembled the bone lesions in the patient. PCSD1 is a new primary prostate cancer bone metastasis-derived xenograft model to study metastatic disease in the bone and to develop novel therapies for inhibiting prostate cancer growth in the bone-niche.


Assuntos
Neoplasias Femorais/patologia , Fêmur/patologia , Osteoblastos/patologia , Osteólise/patologia , Neoplasias da Próstata/secundário , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Neoplasias Femorais/complicações , Neoplasias Femorais/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos SCID , Osteoblastos/metabolismo , Osteólise/complicações , Osteólise/diagnóstico por imagem , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/complicações , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Microtomografia por Raio-X
14.
Neuromuscul Disord ; 20(2): 111-21, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20080405

RESUMO

Glucocorticoids are beneficial in many muscular dystrophies but they are ineffective in treating dysferlinopathy, a rare muscular dystrophy caused by loss of dysferlin. We sought to understand the molecular basis for this disparity by studying the effects of a glucocorticoid on differentiation of the myoblast cell line, C2C12, and dysferlin-deficient C2C12s. We found that pharmacologic doses of dexamethasone enhanced the myogenic fusion efficiency of C2C12s and increased the induction of dysferlin, along with specific myogenic transcription factors, sarcolemmal and structural proteins. In contrast, the dysferlin-deficient C2C12 cell line demonstrated a reduction in long myotubes and early induction of particular muscle differentiation proteins, most notably, myosin heavy chain. Dexamethasone partially reversed the defect in myogenic fusion in the dysferlin-deficient C2C12 cells. We hypothesize that a key therapeutic benefit of glucocorticoids may be the up-regulation of dysferlin as an important component of glucocorticoid-enhanced myogenic differentiation.


Assuntos
Dexametasona/farmacologia , Proteínas de Membrana/agonistas , Desenvolvimento Muscular/efeitos dos fármacos , Doenças Musculares/tratamento farmacológico , Mioblastos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Dexametasona/uso terapêutico , Relação Dose-Resposta a Droga , Disferlina , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Proteínas de Membrana/biossíntese , Proteínas de Membrana/deficiência , Camundongos , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/efeitos dos fármacos , Proteínas Musculares/metabolismo , Doenças Musculares/metabolismo , Doenças Musculares/fisiopatologia , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
15.
Cell Signal ; 20(12): 2221-30, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18793717

RESUMO

Genotoxic agents such as ionizing radiation trigger cell cycle arrest at the G1/S and G2/M checkpoints, allowing cells to repair damaged DNA before entry into mitosis. DNA damage-induced G1 arrest involves p53-dependent expression of p21 (Cip1/Waf-1), which inhibits cyclin-dependent kinases and blocks S phase entry. While much of the core DNA damage response has been well-studied, other signaling proteins that intersect with and modulate this response remain uncharacterized. In this study, we identify Suppressor of Cytokine Signaling (SOCS)-3 as an important regulator of radiation-induced G1 arrest. SOCS3-deficient fibroblasts fail to undergo G1 arrest and accumulate in the G2/M phase of the cell cycle. SOCS3 knockout cells phosphorylate p53 and H2AX normally in response to radiation, but fail to upregulate p21 expression. In addition, STAT3 phosphorylation is elevated in SOCS3-deficient cells compared to WT cells. Normal G1 arrest can be restored in SOCS3 KO cells by retroviral transduction of WT SOCS3 or a dominant-negative mutant of STAT3. Our results suggest a novel function for SOCS3 in the control of genome stability by negatively regulating STAT3-dependent radioresistant DNA synthesis, and promoting p53-dependent p21 expression.


Assuntos
Ciclo Celular/efeitos da radiação , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Dano ao DNA , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Apoptose , Fase G1 , Fase G2 , Camundongos , Camundongos Knockout , Mitose , Fosforilação , Radiação Ionizante , Fase S , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas , Fatores de Tempo , Proteína Supressora de Tumor p53/metabolismo
16.
Clin Cancer Res ; 13(8): 2344-53, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17438093

RESUMO

PURPOSE: The expression of suppressors of cytokine signaling 1 (SOCS1) and SOCS3 genes is dysregulated in several solid tumors, causing aberrant activation of cell growth and survival signaling pathways. In this study, we analyzed SOCS1 and SOCS3 gene expression in glioblastoma multiforme (GBM) and studied the role of each protein in GBM cell signaling and radiation resistance. EXPERIMENTAL DESIGN: SOCS1 and SOCS3 gene expression was analyzed in 10 GBM cell lines by reverse transcription-PCR and Western blotting. SOCS3 expression was also studied in 12 primary GBM tissues by immunohistochemistry. The methylation status of the SOCS1 and SOCS3 loci was determined by methylation-specific PCR. Extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) activation in GBM cell lines overexpressing SOCS1 or lacking SOCS3 was determined by phosphorylated-specific Western blotting. Radiation responses in SOCS1-positive and SOCS3-deficient GBM cell lines and fibroblasts from wild-type and SOCS1 or SOCS3 knockout mice were studied in a clonogenic survival assay. RESULTS: All GBM cell lines tested lacked SOCS1 expression, whereas GBM cell lines and primary GBM tumor samples constitutively expressed SOCS3. SOCS1 gene repression was linked to hypermethylation of the SOCS1 genetic locus in GBM cells. Reintroduction of SOCS1 or blocking SOCS3 expression sensitized cells to radiation and decreased the levels of activated ERK MAPKs in GBM cells. CONCLUSIONS: SOCS1 and SOCS3 are aberrantly expressed in GBM cell lines and primary tissues. Altered SOCS gene expression leads to increased cell signaling through the ERK-MAPK pathway and may play a role in disease pathogenesis by enhancing GBM radioresistance.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/radioterapia , Tolerância a Radiação , Radiação Ionizante , Proteínas Supressoras da Sinalização de Citocina/genética , Animais , Linhagem Celular Tumoral , Metilação de DNA , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/deficiência
17.
J Neurosci ; 26(51): 13390-9, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17182790

RESUMO

The regulated translation of localized mRNAs in neurons provides a mechanism for spatially restricting gene expression in a synapse-specific manner. To identify the population of mRNAs present in distal neuronal processes of rodent hippocampal neurons, we grew neurons on polycarbonate filters etched with 3 microm pores. Although the neuronal cell bodies remained on the top surface of the filters, dendrites, axons, and glial processes penetrated through the pores to grow along the bottom surface of the membrane where they could be mechanically separated from cell bodies. Quantitative PCR and immunochemical analyses of the process preparation revealed that it was remarkably free of somatic contamination. Microarray analysis of RNA isolated from the processes identified over 100 potentially localized mRNAs. In situ hybridization studies of 19 of these transcripts confirmed that all 19 were present in dendrites, validating the utility of this approach for identifying dendritically localized transcripts. Many of the identified mRNAs encoded components of the translational machinery and several were associated with the RNA-binding protein Staufen. These findings indicate that there is a rich repertoire of mRNAs whose translation can be locally regulated and support the emerging idea that local protein synthesis serves to boost the translational capacity of synapses.


Assuntos
Hipocampo/citologia , Hipocampo/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Análise Serial de Proteínas/métodos , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA