Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nature ; 583(7817): 615-619, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32494007

RESUMO

Pneumonia resulting from infection is one of the leading causes of death worldwide. Pulmonary infection by the respiratory syncytial virus (RSV) is a large burden on human health, for which there are few therapeutic options1. RSV targets ciliated epithelial cells in the airways, but how viruses such as RSV interact with receptors on these cells is not understood. Nucleolin is an entry coreceptor for RSV2 and also mediates the cellular entry of influenza, the parainfluenza virus, some enteroviruses and the bacterium that causes tularaemia3,4. Here we show a mechanism of RSV entry into cells in which outside-in signalling, involving binding of the prefusion RSV-F glycoprotein with the insulin-like growth factor-1 receptor, triggers the activation of protein kinase C zeta (PKCζ). This cellular signalling cascade recruits nucleolin from the nuclei of cells to the plasma membrane, where it also binds to RSV-F on virions. We find that inhibiting PKCζ activation prevents the trafficking of nucleolin to RSV particles on airway organoid cultures, and reduces viral replication and pathology in RSV-infected mice. These findings reveal a mechanism of virus entry in which receptor engagement and signal transduction bring the coreceptor to viral particles at the cell surface, and could form the basis of new therapeutics to treat RSV infection.


Assuntos
Receptor IGF Tipo 1/metabolismo , Receptores Virais/metabolismo , Vírus Sinciciais Respiratórios/metabolismo , Internalização do Vírus , Linhagem Celular , Núcleo Celular/metabolismo , Ativação Enzimática , Humanos , Fusão de Membrana/efeitos dos fármacos , Fosfoproteínas/metabolismo , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/patogenicidade , Vírus Sinciciais Respiratórios/fisiologia , Carga Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Nucleolina
3.
Artigo em Inglês | MEDLINE | ID: mdl-32232015

RESUMO

Human rhinovirus (HRV) is a major trigger of acute exacerbations of both asthma and chronic obstructive pulmonary disease. The airway epithelium is the primary site of HRV infection, and responds by releasing proinflammatory and antimicrobial cytokines. Epithelial cells release IL-17C in response to exposure to bacterial, viral, and fungal pathogens. We previously demonstrated a role for HRV in IL-17C production from undifferentiated epithelial cells, and showed that IL-17C could play a role in neutrophil recruitment. To extend these observations, highly differentiated human bronchial epithelial cells (HBE) were infected apically with HRV to assess the effect of dose, time, viral replication, and strain on the IL-17C response. Cellular lysates, and basolateral and apical secretions were analyzed for IL-17C and CXCL1 protein release following HRV or IL-17C stimulation. Upon HRV infection, IL-17C protein was exclusively released basolaterally in a dose-, time-, and viral replication-dependent manner. Several strains of rhinovirus were capable of inducing IL-17C release. Enriched columnar epithelial cell populations contained significantly higher viral titer, and expressed significantly more IL-17C mRNA than enriched basal cell populations. In addition, the kinetic profile of IL-17C release following HRV treatment closely mimics viral shedding kinetics, further implicating the role of rhinovirus replication in IL-17C production. Basolateral treatment of HBEs with IL-17C resulted in a dose-dependent increase in basolateral CXCL1 production. In summary, replicating rhinovirus drives basolateral IL-17C protein release from both apical and basal epithelial cells, which may then act in an autocrine/paracrine manner to promote basolateral CXCL1 protein release.


Assuntos
Infecções por Picornaviridae , Rhinovirus , Células Cultivadas , Células Epiteliais , Humanos , Interleucina-17
4.
J Immunol ; 202(1): 160-170, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30504421

RESUMO

Virus-bacteria coinfections are associated with more severe exacerbations and increased risk of hospital readmission in patients with chronic obstructive pulmonary disease (COPD). The airway epithelium responds to such infections by releasing proinflammatory and antimicrobial cytokines, including IL-17C. However, the regulation and role of IL-17C is not well understood. In this study, we examine the mechanisms regulating IL-17C production and its potential role in COPD exacerbations. Human bronchial epithelial cells (HBE) obtained from normal, nontransplanted lungs or from brushings of nonsmokers, healthy smokers, or COPD patients were exposed to bacteria and/or human rhinovirus (HRV). RNA and protein were collected for analysis, and signaling pathways were assessed with pharmacological agonists, inhibitors, or small interfering RNAs. HBE were also stimulated with IL-17C to assess function. HRV-bacterial coinfections synergistically induced IL-17C expression. This induction was dependent on HRV replication and required NF-κB-mediated signaling. Synergy was lost in the presence of an inhibitor of the p38 MAP kinase pathway. HBE exposed to IL-17C show increased gene expression of CXCL1, CXCL2, NFKBIZ, and TFRC, and release CXCL1 protein, a neutrophil chemoattractant. Knockdown of IL-17C significantly reduced induction of CXCL1 in response to HRV-bacterial coinfection as well as neutrophil chemotaxis. HBE from healthy smokers release less IL-17C than cells from nonsmokers, but cells from COPD patients release significantly more IL-17C compared with either nonsmokers or healthy smokers. These data suggest that IL-17C may contribute to microbial-induced COPD exacerbations by promoting neutrophil recruitment.


Assuntos
Interleucina-17/metabolismo , Infecções por Picornaviridae/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/fisiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Mucosa Respiratória/imunologia , Rhinovirus/fisiologia , Células Cultivadas , Quimiotaxia , Fumar Cigarros/efeitos adversos , Coinfecção , Citocinas/metabolismo , Humanos , Interleucina-17/genética , NF-kappa B/metabolismo , Infiltração de Neutrófilos/genética , RNA Interferente Pequeno/genética , Mucosa Respiratória/microbiologia , Mucosa Respiratória/virologia , Transdução de Sinais , Replicação Viral , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
J Pharmacol Exp Ther ; 366(1): 220-236, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653961

RESUMO

The contribution of gene expression changes to the adverse and therapeutic effects of ß2-adrenoceptor agonists in asthma was investigated using human airway epithelial cells as a therapeutically relevant target. Operational model-fitting established that the long-acting ß2-adrenoceptor agonists (LABA) indacaterol, salmeterol, formoterol, and picumeterol were full agonists on BEAS-2B cells transfected with a cAMP-response element reporter but differed in efficacy (indacaterol ≥ formoterol > salmeterol ≥ picumeterol). The transcriptomic signature of indacaterol in BEAS-2B cells identified 180, 368, 252, and 10 genes that were differentially expressed (>1.5- to <0.67-fold) after 1-, 2-, 6-, and 18-hour of exposure, respectively. Many upregulated genes (e.g., AREG, BDNF, CCL20, CXCL2, EDN1, IL6, IL15, IL20) encode proteins with proinflammatory activity and are annotated by several, enriched gene ontology (GO) terms, including cellular response to interleukin-1, cytokine activity, and positive regulation of neutrophil chemotaxis The general enriched GO term extracellular space was also associated with indacaterol-induced genes, and many of those, including CRISPLD2, DMBT1, GAS1, and SOCS3, have putative anti-inflammatory, antibacterial, and/or antiviral activity. Numerous indacaterol-regulated genes were also induced or repressed in BEAS-2B cells and human primary bronchial epithelial cells by the low efficacy LABA salmeterol, indicating that this genomic effect was neither unique to indacaterol nor restricted to the BEAS-2B airway epithelial cell line. Collectively, these data suggest that the consequences of inhaling a ß2-adrenoceptor agonist may be complex and involve widespread changes in gene expression. We propose that this genomic effect represents a generally unappreciated mechanism that may contribute to the adverse and therapeutic actions of ß2-adrenoceptor agonists in asthma.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Brônquios/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Indanos/farmacologia , Quinolonas/farmacologia , Receptores Adrenérgicos beta 2/metabolismo , Transcriptoma/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 2/efeitos adversos , Agonistas de Receptores Adrenérgicos beta 2/uso terapêutico , Linhagem Celular , AMP Cíclico/metabolismo , Humanos , Indanos/efeitos adversos , Indanos/uso terapêutico , Quinolonas/efeitos adversos , Quinolonas/uso terapêutico , Fatores de Tempo
6.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L731-L740, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28283475

RESUMO

Exacerbations of chronic obstructive pulmonary disease are triggered by viral or bacterial pathogens, with human rhinovirus (HRV) and nontypeable Hemophilus influenzae (NTHI) among the most commonly detected pathogens. Patients who suffer from concomitant viral and bacterial infection have more severe exacerbations. The airway epithelial cell is the initial site of viral and bacterial interactions, and CCL20 is an epithelial chemokine that attracts immature dendritic cells to the airways and can act as an antimicrobial. As such, it contributes to innate and adaptive immune responses to infection. We used primary cultures of human bronchial epithelial cells and the BEAS-2B cell line to examine the effects of bacterial-viral coexposure, as well as each stimulus alone, on epithelial expression of CXCL8 and, in particular, CCL20. HRV-bacterial coexposure induced synergistic production of CXCL8 and CCL20 compared with the sum of each stimulus alone. Synergistic induction of CCL20 did not require viral replication and occurred with two different HRV serotypes that use different viral receptors. Synergy was also seen with either NTHI or Pseudomonas aeruginosa Synergistic induction of CCL20 was transcriptionally regulated. Although NF-κB was required for transcription, it did not regulate synergy, but NF-IL-6 did appear to contribute. Among MAPK inhibitors studied, neither SB203580 nor PD98059 had any effect on synergy, whereas U0126 prevented synergistic induction of CCL20 by HRV and bacteria, apparently via "off-target" effects. Thus bacterial-viral coexposure synergistically increases innate immune responses compared with individual infections. We speculate that this increased inflammatory response leads to worse clinical outcomes.


Assuntos
Brônquios/patologia , Quimiocina CCL20/biossíntese , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Haemophilus influenzae/fisiologia , Rhinovirus/fisiologia , Quimiocina CCL20/genética , Dactinomicina/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Haemophilus influenzae/efeitos dos fármacos , Células HeLa , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhinovirus/efeitos dos fármacos , Sorotipagem , Fatores de Tempo , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Replicação Viral/efeitos dos fármacos
7.
Chest ; 148(6): 1508-1516, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26270739

RESUMO

In healthy individuals, human rhinovirus (HRV) infections are the major cause of the common cold. These are generally uncomplicated infections except for occasional cases of otitis media or sinusitis. In individuals with asthma, however, HRV infections can have a major impact on disease development and progression. HRV-induced wheezing illnesses in early life are a significant risk factor for subsequent development of asthma, and growing evidence supports a role of recurrent HRV infections in the development and progression of several aspects of airway remodeling in asthma. In addition, HRV infections are one of the most common triggers for acute exacerbations of asthma, which represent a major burden to health-care systems around the world. None of the currently prescribed medications for asthma are effective in preventing or reversing asthma development and airway remodeling or are ideal for treating HRV-induced exacerbations of asthma. Thus, a better understanding of the role of HRV in asthma is important if we are to develop more effective therapies. In the past decade, we have gained new insights into the role of HRV infections in the development and progression of airway remodeling as well as a new appreciation for the proinflammatory and host defense responses to HRV infections that may help to regulate susceptibility to asthma exacerbations. This article reviews the current understanding of the role HRV infections play in the pathogenesis of asthma and identifies possible avenues to new therapeutic strategies for limiting the effects of HRV infections in asthma.


Assuntos
Asma , Infecções por Picornaviridae , Rhinovirus/patogenicidade , Remodelação das Vias Aéreas , Asma/epidemiologia , Asma/etiologia , Asma/imunologia , Asma/fisiopatologia , Asma/virologia , Progressão da Doença , Interação Gene-Ambiente , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno/imunologia , Humanos , Infecções por Picornaviridae/genética , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/fisiopatologia , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA