Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 8(8)2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31443248

RESUMO

Low temperature stress affects growth and development in pea (Pisum sativum L.) and decreases yield. In this study, RNA sequencing time series analyses performed on lines, Champagne frost-tolerant and Térèse frost-sensitive, during a low temperature treatment versus a control condition, led us to identify 4981 differentially expressed genes. Thanks to our experimental design and statistical analyses, we were able to classify these genes into three sets. The first one was composed of 2487 genes that could be related to the constitutive differences between the two lines and were not regulated during cold treatment. The second gathered 1403 genes that could be related to the chilling response. The third set contained 1091 genes, including genes that could be related to freezing tolerance. The identification of differentially expressed genes related to cold, oxidative stress, and dehydration responses, including some transcription factors and kinases, confirmed the soundness of our analyses. In addition, we identified about one hundred genes, whose expression has not yet been linked to cold stress. Overall, our findings showed that both lines have different characteristics for their cold response (chilling response and/or freezing tolerance), as more than 90% of differentially expressed genes were specific to each of them.

2.
J Plant Physiol ; 170(13): 1148-57, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23632303

RESUMO

Cold stress affects plant growth and development. In order to better understand the responses to cold (chilling or freezing tolerance), we used two contrasted pea lines. Following a chilling period, the Champagne line becomes tolerant to frost whereas the Terese line remains sensitive. Four suppression subtractive hybridisation libraries were obtained using mRNAs isolated from pea genotypes Champagne and Terese. Using quantitative polymerase chain reaction (qPCR) performed on 159 genes, 43 and 54 genes were identified as differentially expressed at the initial time point and during the time course study, respectively. Molecular markers were developed from the differentially expressed genes and were genotyped on a population of 164 RILs derived from a cross between Champagne and Terese. We identified 5 candidate genes colocalizing with 3 different frost damage quantitative trait loci (QTL) intervals and a protein quantity locus (PQL) rich region previously reported. This investigation revealed the role of constitutive differences between both genotypes in the cold responses, in particular with genes related to glycine degradation pathway that could confer to Champagne a better frost tolerance. We showed that freezing tolerance involves a decrease of expression of genes related to photosynthesis and the expression of a gene involved in the production of cysteine and methionine that could act as cryoprotectant molecules. Although it remains to be confirmed, this study could also reveal the involvement of the jasmonate pathway in the cold responses, since we observed that two genes related to this pathway were mapped in a frost damage QTL interval and in a PQL rich region interval, respectively.


Assuntos
Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Pisum sativum/fisiologia , Etiquetas de Sequências Expressas/química , Etiquetas de Sequências Expressas/metabolismo , Biblioteca Gênica , Genes de Plantas , Genótipo , Dados de Sequência Molecular , Pisum sativum/química , Pisum sativum/genética , Reação em Cadeia da Polimerase , Locos de Características Quantitativas , Análise de Sequência de DNA
3.
Proc Natl Acad Sci U S A ; 109(51): 21158-63, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213200

RESUMO

Legumes were among the first plant species to be domesticated, and accompanied cereals in expansion of agriculture from the Fertile Crescent into diverse environments across the Mediterranean basin, Europe, Central Asia, and the Indian subcontinent. Although several recent studies have outlined the molecular basis for domestication and eco-geographic adaptation in the two main cereals from this region, wheat and barley, similar questions remain largely unexplored in their legume counterparts. Here we identify two major loci controlling differences in photoperiod response between wild and domesticated pea, and show that one of these, high response to photoperiod (HR), is an ortholog of early flowering 3 (ELF3), a gene involved in circadian clock function. We found that a significant proportion of flowering time variation in global pea germplasm is controlled by HR, with a single, widespread functional variant conferring altered circadian rhythms and the reduced photoperiod response associated with the spring habit. We also present evidence that ELF3 has a similar role in lentil, another major legume crop, with a distinct functional variant contributing to reduced photoperiod response in cultivars widely deployed in short-season environments. Our results identify the factor likely to have permitted the successful prehistoric expansion of legume cultivation to Northern Europe, and define a conserved genetic basis for major adaptive changes in flowering phenology and growth habit in an important crop group.


Assuntos
Fabaceae/fisiologia , Lens (Planta)/metabolismo , Fotoperíodo , Pisum sativum/metabolismo , Aclimatação/genética , Adaptação Fisiológica/genética , Relógios Circadianos , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Modelos Genéticos , Dados de Sequência Molecular , Pisum sativum/genética , Fenótipo , Estações do Ano
4.
Proteomics ; 4(9): 2672-84, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15352242

RESUMO

Identifying wheat leaf protein expression is a major challenge of functional genomics. Using two-dimensional gel electrophoresis 541 wheat leaf proteins were separated and 55 of them were sequenced by nano liquid chromatography-tandem mass spectrometry. Peptide sequence data were screened against protein banks and expressed sequence tag public banks. Among these 55 spots, 20 proteins were found in wheat and 21 in other grass families (http://www.ncbi.nlm.nih.gov/). Twelve proteins showed similarities with other eukaryotic plant species. One protein showed homology to a bacterial sequence and another protein remained unknown. In 18 cases a significant score was found for the wheat TUC (Tentative Unique Contigs) of the PlantGDB (http://www.plantgdb.org/) data. In several cases, different spots were identified as corresponding to the same protein that can probably be attributed to the hexaploid structure of wheat. The identified proteins were classified in six groups and their role is discussed. Most of them (31/55) are involved in carbohydrate metabolism.


Assuntos
Folhas de Planta/química , Proteínas de Plantas/análise , Proteoma/análise , Triticum/química , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Dados de Sequência Molecular , Proteínas de Plantas/genética , Análise de Sequência de Proteína , Triticum/anatomia & histologia
5.
Proteomics ; 4(3): 709-19, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14997493

RESUMO

To limit N-fertilizer applied on wheat, cultivars that use N more efficiently are needed. Our objective was to investigate differences of nitrogen utilization in varieties by studying qualitative and quantitative proteins expression. Two wheat varieties, 'Arche' and 'Récital', were grown under controlled conditions at four N levels (0, 2, 8, and 20 mg N/plant/day) with two replicates. The number of tillers/plant, aerial dry weight/plant and total N content were measured after two months. Two-dimensional gel electrophoresis was also performed on leaf protein extracts. Analyses of variance showed that the N level effect was highly significant for the number of tillers/plant, aerial dry weight and N content. The variety x N level interaction was significant for N content. Analyses of variance on % volume carried out for 524 spots showed a significant variety effect for 55 spots and a significant N treatment effect for 76 spots. Twenty spots showed a significant variety x N treatment interaction. Fourteen proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The possible role of these proteins, eight of which belong to the carbon metabolism, is discussed.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Nitrogênio/metabolismo , Triticum/metabolismo , Sequência de Aminoácidos , Arabidopsis/metabolismo , Bioquímica/métodos , Carbono/química , Cromatografia Líquida de Alta Pressão , Biologia Computacional , Genótipo , Focalização Isoelétrica , Espectrometria de Massas , Modelos Biológicos , Dados de Sequência Molecular , Oxigênio/metabolismo , Peptídeos/química , Ligação Proteica , Proteoma , Solanum tuberosum/metabolismo , Fatores de Tempo , Nicotiana/metabolismo , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA