Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 92(11): 2163-2174, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37632258

RESUMO

The reptilian form of hibernation (brumation) is much less studied than its mammalian and insect equivalents. Hibernation and brumation share some basic features but may differ in others. Evidence for hypometabolism in brumating reptiles beyond the effect of temperature is sporadic and often ignored. We calculated the standard metabolic rates (SMR, oxygen uptake during inactivity), in winter and/or summer, of 156 individuals representing 59 species of Israeli squamates across all 17 local families. For 32 species, we measured the same individuals during both seasons. We measured gas exchange continuously in a dark metabolic chamber, under the average January high and low temperatures (20°C and 12°C), during daytime and nighttime. We examined how SMR changes with season, biome, body size, temperature and time of day, using phylogenetic mixed models. Metabolic rates increased at sunrise in the diurnal species, despite no light or other external cues, while in nocturnal species the metabolic rates did not increase. Cathemeral species shifted from a diurnal-like diel pattern in winter to a nocturnal-like pattern in summer. Regardless of season, Mediterranean species SMRs were 30% higher than similar-sized desert species. Summer SMR of all species together scaled with body size with an exponent of 0.84 but dropped to 0.71 during brumation. Individuals measured during both seasons decreased their SMR between summer and winter by a 47%, on average, at 20°C and by 70% at 12°C. Q10 was 1.75 times higher in winter than in summer, possibly indicating an active suppression of metabolic processes under cold temperatures. Our results challenge the commonly held perception that squamate physiology is mainly shaped by temperature, with little role for intrinsic metabolic regulation. The patterns we describe indicate that seasonal, diel and geographic factors can trigger remarkable shifts in metabolism across squamate species.


Assuntos
Temperatura Baixa , Metabolismo Energético , Humanos , Animais , Temperatura , Estações do Ano , Filogenia , Metabolismo Energético/fisiologia , Temperatura Corporal , Mamíferos
2.
Zootaxa ; 4881(2): zootaxa.4881.2.4, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33311315

RESUMO

The enigmatic snake genus Micrelaps has uncertain phylogenetic affinities. The type species of the genus, Micrelaps muelleri, inhabits the Southern Levant. Snakes inhabiting the Jordan River Valley just south of the Sea of Galilee have been described as a new species, Micrelaps tchernovi, based on their distinct colour patterns, despite M. muelleri being well known to be variable in colour-pattern traits. Here we use morphological and molecular data to examine the taxonomic status and phylogenetic affinity of Levantine Micrelaps. We show that all scalation, colour, and pattern-related traits are extremely variable across the range of these snakes. Some morphological features show clinal variation related to temperature and precipitation, and snakes with a 'tchernovi' morph are merely at one end of a continuum of morphological variation. Both 'classical muelleri' and 'tchernovi' morphs occur in syntopy in the Jordan Valley and elsewhere in Israel. Against this background of high morphological variation, neutral genetic markers show almost no differentiation between snakes, no genetic structure is evident across populations, and no differences are to be found between the two putative species. We conclude that Levantine Micrelaps belongs to a single, morphologically variable, and genetically uniform species, Micrelaps muelleri, of which M. tchernovi is a junior synonym.


Assuntos
Serpentes , Animais , Israel , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA