Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36986660

RESUMO

Four model polymers, representing (i) amorphous homopolymers (Kollidon K30, K30), (ii) amorphous heteropolymers (Kollidon VA64, KVA), (iii) semi-crystalline homopolymers (Parteck MXP, PXP), and (iv) semi-crystalline heteropolymers (Kollicoat IR, KIR), were examined for their effectiveness in creating posaconazole-based amorphous solid dispersions (ASDs). Posaconazole (POS) is a triazole antifungal drug that has activity against Candida and Aspergillus species, belonging to class II of the biopharmaceutics classification system (BCS). This means that this active pharmaceutical ingredient (API) is characterized by solubility-limited bioavailability. Thus, one of the aims of its formulation as an ASD was to improve its aqueous solubility. Investigations were performed into how polymers affected the following characteristics: melting point depression of the API, miscibility and homogeneity with POS, improvement of the amorphous API's physical stability, melt viscosity (and associated with it, drug loading), extrudability, API content in the extrudate, long term physical stability of the amorphous POS in the binary drug-polymer system (in the form of the extrudate), solubility, and dissolution rate of hot melt extrusion (HME) systems. The obtained results led us to conclude that the physical stability of the POS-based system increases with the increasing amorphousness of the employed excipient. Copolymers, compared to homopolymers, display greater homogeneity of the investigated composition. However, the enhancement in aqueous solubility was significantly higher after utilizing the homopolymeric, compared to the copolymeric, excipients. Considering all of the investigated parameters, the most effective additive in the formation of a POS-based ASD is an amorphous homopolymer-K30.

2.
Int J Pharm ; 630: 122444, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36503848

RESUMO

Due to the possibility of designing various spatial structures, three-dimensional printing can be implemented in the production of customized medicines. Nevertheless, the use of these methods for the production of dosage forms requires further optimization, understanding, and development of printouts' quality verification mechanisms. Therefore, the goal of our work was the preparation and advanced characterization of 3D printed orodispersible tablets (ODTs) containing fluconazole, printed by the fused deposition modeling (FDM) method. We prepared and analyzed 7 printable filaments containing from 10% to 70% fluconazole, used as model API. Obtaining a FDM-printable filament with such a high API content makes our work unique. In addition, we confirmed the 12-month stability of the formulation, which, to our knowledge, is the first study of this type. Next, we printed 10 series of porous tablets containing 50 mg of API from both fresh and stored filaments containing 20 %, 40 %, or 70 % fluconazole. We confirmed the high quality and precision of the printouts using scanning electron microscopy. The detailed analysis of the tablets' disintegration process included the Pharmacopeial test, but also the surface dissolution imaging analysis (SDI) and the test simulating oral conditions performed in own-constructed apparatus. For each composition, we obtained tablets disintegrating in less than 3 min, i.e., meeting the criteria for ODTs required by the European Pharmacopeia. The filaments' storage at ambient conditions did not affect the quality of the tablets. All printed tablets released over 95% of the fluconazole within 30 min. Moreover, the printouts were stable for two weeks.


Assuntos
Fluconazol , Impressão Tridimensional , Liberação Controlada de Fármacos , Comprimidos/química , Porosidade , Tecnologia Farmacêutica/métodos
3.
Pharmaceutics ; 14(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35456677

RESUMO

Additive technologies have undoubtedly become one of the most intensively developing manufacturing methods in recent years. Among the numerous applications, the interest in 3D printing also includes its application in pharmacy for production of small batches of personalized drugs. For this reason, we conducted multi-stage pre-formulation studies to optimize the process of manufacturing solid dosage forms by photopolymerization with visible light. Based on tests planned and executed according to the design of the experiment (DoE), we selected the optimal quantitative composition of photocurable resin made of PEG 400, PEGDA MW 575, water, and riboflavin, a non-toxic photoinitiator. In subsequent stages, we adjusted the printer set-up and process parameters. Moreover, we assessed the influence of the co-initiators ascorbic acid or triethanolamine on the resin's polymerization process. Next, based on an optimized formulation, we printed and analyzed drug-loaded tablets containing mebeverine hydrochloride, characterized by a gradual release of active pharmaceutical ingredient (API), reaching 80% after 6 h. We proved the possibility of reusing the drug-loaded resin that was not hardened during printing and determined the linear correlation between the volume of the designed tablets and the amount of API, confirming the possibility of printing personalized modified-release tablets.

4.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35056125

RESUMO

Additive manufacturing technologies are considered as a potential way to support individualized pharmacotherapy due to the possibility of the production of small batches of customized tablets characterized by complex structures. We designed five different shapes and analyzed the effect of the surface/mass ratio, the influence of excipients, and storage conditions on the disintegration time of tablets printed using the fused deposition modeling method. As model pharmaceutical active ingredients (APIs), we used paracetamol and domperidone, characterized by different thermal properties, classified into the various Biopharmaceutical Classification System groups. We found that the high surface/mass ratio of the designed tablet shapes together with the addition of mannitol and controlled humidity storage conditions turned out to be crucial for fast tablet's disintegration. As a result, mean disintegration time was reduced from 5 min 46 s to 2 min 22 s, and from 11 min 43 s to 2 min 25 s for paracetamol- and domperidone-loaded tablets, respectively, fulfilling the European Pharmacopeia requirement for orodispersible tablets (ODTs). The tablet's immediate release characteristics were confirmed during the dissolution study: over 80% of APIs were released from printlets within 15 min. Thus, this study proved the possibility of using fused deposition modeling for the preparation of ODTs.

5.
Materials (Basel) ; 14(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947294

RESUMO

Wound dressings when applied are in contact with wound exudates in vivo or with acceptor fluid when testing drug release from wound dressing in vitro. Therefore, the assessment of bidirectional mass transport phenomena in dressing after application on the substrate is important but has never been addressed in this context. For this reason, an in vitro wound dressing stack model was developed and implemented in the 3D printed holder. The stack was imaged using magnetic resonance imaging, i.e., relaxometric imaging was performed by means of T2 relaxation time and signal amplitude 1D profiles across the wound stack. As a substrate, fetal bovine serum or propylene glycol were used to simulate in vivo or in vitro cases. Multi-exponential analysis of the spatially resolved magnetic resonance signal enabled to distinguish components originating from water and propylene glycol in various environments. The spatiotemporal evolution of these components was assessed. The components were related to mass transport (water, propylene glycol) in the dressing/substrate system and subsequent changes of physicochemical properties of the dressing and adjacent substrate. Sharp changes in spatial profiles were detected and identified as moving fronts. It can be concluded that: (1) An attempt to assess mass transport phenomena was carried out revealing the spatial structure of the wound dressing in terms of moving fronts and corresponding layers; (2) Moving fronts, layers and their temporal evolution originated from bidirectional mass transport between wound dressing and substrate. The setup can be further applied to dressings containing drugs.

6.
Molecules ; 26(11)2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067434

RESUMO

The flexibility of dose and dosage forms makes 3D printing a very interesting tool for personalized medicine, with fused deposition modeling being the most promising and intensively developed method. In our research, we analyzed how various types of disintegrants and drug loading in poly(vinyl alcohol)-based filaments affect their mechanical properties and printability. We also assessed the effect of drug dosage and tablet spatial structure on the dissolution profiles. Given that the development of a method that allows the production of dosage forms with different properties from a single drug-loaded filament is desirable, we developed a method of printing ketoprofen tablets with different dose and dissolution profiles from a single feedstock filament. We optimized the filament preparation by hot-melt extrusion and characterized them. Then, we printed single, bi-, and tri-layer tablets varying with dose, infill density, internal structure, and composition. We analyzed the reproducibility of a spatial structure, phase, and degree of molecular order of ketoprofen in the tablets, and the dissolution profiles. We have printed tablets with immediate- and sustained-release characteristics using one drug-loaded filament, which demonstrates that a single filament can serve as a versatile source for the manufacturing of tablets exhibiting various release characteristics.


Assuntos
Química Farmacêutica/métodos , Cetoprofeno/química , Cetoprofeno/síntese química , Impressão Tridimensional , Comprimidos , Varredura Diferencial de Calorimetria , Preparações de Ação Retardada , Composição de Medicamentos/métodos , Desenho de Fármacos , Liberação Controlada de Fármacos , Elasticidade , Excipientes/química , Álcool de Polivinil , Medicina de Precisão , Reprodutibilidade dos Testes , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Difração de Raios X , Microtomografia por Raio-X
7.
Materials (Basel) ; 13(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158192

RESUMO

The simplicity of object shape and composition modification make additive manufacturing a great option for customized dosage form production. To achieve this goal, the correlation between structural and functional attributes of the printed objects needs to be analyzed. So far, it has not been deeply investigated in 3D printing-related papers. The aim of our study was to modify the functionalities of printed tablets containing liquid crystal-forming drug itraconazole by introducing polyvinylpyrrolidone-based polymers into the filament-forming matrices composed predominantly of poly(vinyl alcohol). The effect of the molecular reorganization of the drug and improved tablets' disintegration was analyzed in terms of itraconazole dissolution. Micro-computed tomography was applied to analyze how the design of a printed object (in this case, a degree of an infill) affects its reproducibility during printing. It was also used to analyze the structure of the printed dosage forms. The results indicated that the improved disintegration obtained due to the use of Kollidon®CL-M was more beneficial for the dissolution of itraconazole than the molecular rearrangement and liquid crystal phase transitions. The lower infill density favored faster dissolution of the drug from printed tablets. However, it negatively affected the reproducibility of the 3D printed object.

8.
AAPS PharmSciTech ; 21(3): 111, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32236750

RESUMO

Low solubility of active pharmaceutical compounds (APIs) remains an important challenge in dosage form development process. In the manuscript, empirical models were developed and analyzed in order to predict dissolution of bicalutamide (BCL) from solid dispersion with various carriers. BCL was chosen as an example of a poor water-soluble API. Two separate datasets were created: one from literature data and another based on in-house experimental data. Computational experiments were conducted using artificial intelligence tools based on machine learning (AI/ML) with a plethora of techniques including artificial neural networks, decision trees, rule-based systems, and evolutionary computations. The latter resulting in classical mathematical equations provided models characterized by the lowest prediction error. In-house data turned out to be more homogeneous, as well as formulations were more extensively characterized than literature-based data. Thus, in-house data resulted in better models than literature-based data set. Among the other covariates, the best model uses for prediction of BCL dissolution profile the transmittance from IR spectrum at 1260 cm-1 wavenumber. Ab initio modeling-based in silico simulations were conducted to reveal potential BCL-excipients interaction. All crucial variables were selected automatically by AI/ML tools and resulted in reasonably simple and yet predictive models suitable for application in Quality by Design (QbD) approaches. Presented data-driven model development using AI/ML could be useful in various problems in the field of pharmaceutical technology, resulting in both predictive and investigational tools revealing new knowledge.


Assuntos
Anilidas/química , Inteligência Artificial , Aprendizado de Máquina , Nitrilas/química , Compostos de Tosil/química , Pós , Solubilidade , Tecnologia Farmacêutica
9.
Eur J Pharm Sci ; 143: 105169, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785383

RESUMO

The article describes the preparation and characterization of 3D-printed tablets with bicalutamide obtained using two-material co-extrusion-based fused deposition modeling (FDM). This method is a modification of typical two-material FDM where separate nozzles are used to print from two filaments. In this work we used a ZMorph® 3D printer with DualPro printhead which allows us to co-extrude two filaments through a single nozzle. This approach gives the opportunity to modify tablet properties in a wide range, especially the dissolution rate, by producing dosage forms with a complex design. The great advantage of this method is that switching between immediate dosage form and controlled release does not require any change in the 3D-printer set-up. We checked the accuracy of co-extrusion printing simply by weighing the amounts of soluble and insoluble material in the printed object as well as calculating the volumes of the printed objects from micro computed tomography (µ-CT) images. We printed several tablets with a different design including simple one-material tablets, two- and three-compartment tablets with various internal structure and composition of the printing path. The dissolution tests were conducted in sink and non-sink conditions. We obtained tablets with desired bicalutamide dissolution profiles, i.e. immediate, controlled, and combined. The formation of spatial matrix slows down the dissolution in controlled and combined release bicalutamide tablets what was confirmed by µ-CT analysis before and after dissolution.


Assuntos
Anilidas/química , Antineoplásicos/química , Nitrilas/química , Impressão Tridimensional , Compostos de Tosil/química , Liberação Controlada de Fármacos , Comprimidos , Tecnologia Farmacêutica
10.
Pharmaceutics ; 10(4)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340413

RESUMO

The effect of solvent removal techniques on phase transition, physical stability and dissolution of bicalutamide from solid dispersions containing polyvinylpyrrolidone (PVP) as a carrier was investigated. A spray dryer and a rotavapor were applied to obtain binary systems containing either 50% or 66% of the drug. Applied techniques led to the formation of amorphous solid dispersions as confirmed by X-ray powder diffractometry and differential scanning calorimetry. Moreover, solid⁻solid transition from polymorphic form I to form II was observed for bicalutamide spray dried without a carrier. The presence of intermolecular interactions between the drug and polymer molecules, which provides the stabilization of molecularly disordered bicalutamide, was analyzed using infrared spectroscopy. Spectral changes within the region characteristic for amide vibrations suggested that the amide form of crystalline bicalutamide was replaced by a less stable imidic one, characteristic of an amorphous drug. Applied processes also resulted in changes of particle geometry and size as confirmed by scanning electron microscopy and laser diffraction measurements, however they did not affect the dissolution significantly as confirmed by intrinsic dissolution study. The enhancement of apparent solubility and dissolution were assigned mostly to the loss of molecular arrangement by drug molecules. Performed statistical analysis indicated that the presence of PVP reduces the mean dissolution time and improve the dissolution efficiency. Although the dissolution was equally affected by both applied methods of solid dispersion manufacturing, spray drying provides better control of particle size and morphology as well as a lower tendency for recrystallization of amorphous solid dispersions.

11.
Pharm Res ; 35(9): 176, 2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29998405

RESUMO

Growing demand for customized pharmaceutics and medical devices makes the impact of additive manufacturing increased rapidly in recent years. The 3D printing has become one of the most revolutionary and powerful tool serving as a technology of precise manufacturing of individually developed dosage forms, tissue engineering and disease modeling. The current achievements include multifunctional drug delivery systems with accelerated release characteristic, adjustable and personalized dosage forms, implants and phantoms corresponding to specific patient anatomy as well as cell-based materials for regenerative medicine. This review summarizes the newest achievements and challenges of additive manufacturing in the field of pharmaceutical and biomedical research that have been published since 2015. Currently developed techniques of 3D printing are briefly described while comprehensive analysis of extrusion-based methods as the most intensively investigated is provided. The issue of printlets attributes, i.e. shape and size is described with regard to personalized dosage forms and medical devices manufacturing. The undeniable benefits of 3D printing are highlighted, however a critical view resulting from the limitations and challenges of the additive manufacturing is also included. The regulatory issue is pointed as well.


Assuntos
Bioimpressão/instrumentação , Impressão Tridimensional/instrumentação , Próteses e Implantes , Tecnologia Farmacêutica/instrumentação , Animais , Bandagens , Pesquisa Biomédica , Composição de Medicamentos/instrumentação , Sistemas de Liberação de Medicamentos/instrumentação , Desenho de Equipamento , Equipamentos e Provisões , Humanos , Medicina de Precisão/instrumentação , Engenharia Tecidual/instrumentação
12.
Eur J Pharm Biopharm ; 131: 44-47, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30048746

RESUMO

Three-dimensional printing is one of the fastest developing technology within pharmaceutical field. With many advantages this method can be found as a new dosage form manufacturing technique, however low printing efficiency stays as one of the major limitations. Therefore, the preparation of filaments as a feedstock and printing of the final dosage forms in pharmacies may by the direction of development for this method. Thus, simple dosage and dissolution profile modification seems to be essential. This can be done in simple way by addition drug-free filament during printing process. In this work the influence of dual co-extrusion process on the properties of 3D-printed tablets with aripiprazole was evaluated. A ZMorph® 3D printer equipped with DualPro extruder was employed to produce tablets made from Kollicoat® IR aripiprazole-loaded filament and commercially available PLA filament used to modify the release profile. Optical and polarized light microscopy were utilized to evaluate structure of printed objects and X-ray diffraction studies were performed to determine crystallinity of aripiprazole within filament and tablets. Fast dissolution of aripiprazole resulted from its amorphization while prolonged drug release was a result of co-extrusion with PLA filament. Importantly, the drug remained crystalline within the filament and phase transition into disordered system appeared during printing of tablets. Given the high stability of crystalline materials such feature is especially beneficial for long-term storage of feedstock filament.


Assuntos
Aripiprazol/química , Química Farmacêutica/métodos , Impressão Tridimensional , Comprimidos , Aripiprazol/administração & dosagem , Cristalização , Solubilidade , Comprimidos com Revestimento Entérico , Difração de Raios X
13.
Int J Pharm ; 533(2): 413-420, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-28552800

RESUMO

Three dimensional printing technology is gaining in importance because of its increasing availability and wide applications. One of the three dimensional printing techniques is Fused Deposition Modelling (FDM) which works on the basis of hot melt extrusion-well known in the pharmaceutical technology. Combination of fused deposition modelling with preparation of the orodispersible film with poorly water soluble substance such as aripiprazole seems to be extra advantageous in terms of dissolution rate. 3D printed as well as casted films were compared in terms of physicochemical and mechanical properties. Moreover, drug-free films were prepared to evaluate the impact of the extrusion process and aripiprazole presence on the film properties. X-ray diffractometry and thermal analyses confirmed transition of aripiprazole into amorphous state during film preparation using 3D printing technique. Amorphization of the aripiprazole and porous structure of printed film led to increased dissolution rate in comparison to casted films, which, however have slightly better mechanical properties due to their continuous structure. It can be concluded that fused deposition modelling is suitable technique and polyvinyl alcohol is applicable polymer for orodispersible films preparation.


Assuntos
Antipsicóticos/química , Aripiprazol/química , Sistemas de Liberação de Medicamentos , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Modelos Teóricos , Álcool de Polivinil/química , Impressão Tridimensional , Difração de Raios X
14.
Mol Pharm ; 14(4): 1071-1081, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28231007

RESUMO

In this paper, we investigated the molecular mobility and physical stability of amorphous bicalutamide, a poorly water-soluble drug widely used in prostate cancer treatment. Our broadband dielectric spectroscopy measurements and differential scanning calorimetry studies revealed that amorphous BIC is a moderately fragile material with a strong tendency to recrystallize from the amorphous state. However, mixing the drug with polymer polyvinylpyrrolidone results in a substantial improvement of physical stability attributed to the antiplasticizing effect governed by the polymer additive. Furthermore, IR study demonstrated the existence of specific interactions between the drug and excipient. We found out that preparation of bicalutamide-polyvinylpyrrolidone mixture in a 2-1 weight ratio completely hinder material recrystallization. Moreover, we determined the time-scale of structural relaxation in the glassy state for investigated materials. Because molecular mobility is considered an important factor governing crystallization behavior, such information was used to approximate the long-term physical stability of an amorphous drug and drug-polymer systems upon their storage at room temperature. Moreover, we found that such systems have distinctly higher water solubility and dissolution rate in comparison to the pure amorphous form, indicating the genuine formulation potential of the proposed approach.


Assuntos
Antineoplásicos/química , Polímeros/química , Varredura Diferencial de Calorimetria/métodos , Química Farmacêutica/métodos , Cristalização/métodos , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Excipientes/química , Cinética , Simulação de Dinâmica Molecular , Povidona/química , Solubilidade
15.
Acta Pol Pharm ; 74(3): 753-763, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-29513944

RESUMO

In the last few years there has been a huge progress in a development of printing techniques and their application in pharmaceutical sciences and particularly in the pharmaceutical technology. The variety of printing methods makes it necessary to systemize them, explain the principles of operation, and specify the possibilities of their use in pharmaceutical technology. This paper aims to review the printing techniques used in a drug development process. The growing interest in 2D and 3D printing methods results in continuously increasing number of scientific papers. Introduction of the first printed drug Spritam@ to the market seems to be a milestone of the 3D printing development. Thus, a particular aim of this review is to show the latest achievements of the researchers in the field of the printing medicines.


Assuntos
Anticonvulsivantes/química , Descoberta de Drogas/tendências , Piracetam/análogos & derivados , Impressão Tridimensional/tendências , Tecnologia Farmacêutica/tendências , Animais , Anticonvulsivantes/uso terapêutico , Difusão de Inovações , Formas de Dosagem , Composição de Medicamentos/tendências , Humanos , Levetiracetam , Piracetam/química , Piracetam/uso terapêutico
16.
Int J Pharm ; 477(1-2): 57-63, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25311175

RESUMO

The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results.


Assuntos
Diclofenaco/administração & dosagem , Excipientes/química , Imageamento por Ressonância Magnética/métodos , Química Farmacêutica/métodos , Preparações de Ação Retardada , Diclofenaco/química , Fractais , Solubilidade , Comprimidos
17.
Int J Pharm ; 456(2): 569-71, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-23994758

RESUMO

The aim of the study is to present the concept of novel method for fast screening of enteric coating compositions properties without the need of preparation of tablets batches for fluid bed coating. Proposed method involves evaluation of enteric coated model tablets in specially designed testing cell with application of MRI technique. The results obtained in the testing cell were compared with results of dissolution studies of mini-tablets coated in fluid bed apparatus. The method could be useful in early stage of formulation development for screening of film coating properties that will shorten and simplify the development works.


Assuntos
Química Farmacêutica/métodos , Imageamento por Ressonância Magnética/métodos , Comprimidos com Revestimento Entérico/química , Avaliação Pré-Clínica de Medicamentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA