Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748577

RESUMO

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Barreira Hematoencefálica/metabolismo , Humanos , Células Endoteliais/metabolismo , Animais , Via de Sinalização Wnt , Claudina-5/metabolismo , Claudina-5/genética , AMP Cíclico/metabolismo , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Junções Íntimas/metabolismo , beta Catenina/metabolismo
2.
Polymers (Basel) ; 15(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37836027

RESUMO

We report the feasibility of using gelatin hydrogel networks as the host for the in situ, environmentally friendly formation of well-dispersed zinc oxide nanoparticles (ZnONPs) and the evaluation of the antibacterial activity of the as-prepared composite hydrogels. The resulting composite hydrogels displayed remarkable biocompatibility and antibacterial activity as compared to those in previous studies, primarily attributed to the uniform distribution of the ZnONPs with sizes smaller than 15 nm within the hydrogel network. In addition, the composite hydrogels exhibited better thermal stability and mechanical properties as well as lower swelling ratios compared to the unloaded counterpart, which could be attributed to the non-covalent interactions between the in situ formed ZnONPs and polypeptide chains. The presence of ZnONPs contributed to the disruption of bacterial cell membranes, the alteration of DNA molecules, and the subsequent release of reactive oxygen species within the bacterial cells. This chain of events culminated in bacterial cell lysis and DNA fragmentation. This research underscores the potential benefits of incorporating antibacterial agents into hydrogels and highlights the significance of preparing antimicrobial agents within gel networks.

3.
Biosensors (Basel) ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36979569

RESUMO

The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Humanos , Barreira Hematoencefálica/metabolismo , Transporte Biológico , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip
4.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766845

RESUMO

Nanoparticles (NPs) are the focus of research efforts that aim to develop successful drug delivery systems for the brain. Polypeptide nanocarriers are versatile platforms and combine high functionality with good biocompatibility and biodegradability. The key to the efficient brain delivery of NPs is the specific targeting of cerebral endothelial cells that form the blood-brain barrier (BBB). We have previously discovered that the combination of two different ligands of BBB nutrient transporters, alanine and glutathione, increases the permeability of vesicular NPs across the BBB. Our aim here was to investigate whether the combination of these molecules can also promote the efficient transfer of 3-armed poly(l-glutamic acid) NPs across a human endothelial cell and brain pericyte BBB co-culture model. Alanine and glutathione dual-targeted polypeptide NPs showed good cytocompatibility and elevated cellular uptake in a time-dependent and active manner. Targeted NPs had a higher permeability across the BBB model and could subsequently enter midbrain-like organoids derived from healthy and Parkinson's disease patient-specific stem cells. These results indicate that poly(l-glutamic acid) NPs can be used as nanocarriers for nervous system application and that the right combination of molecules that target cerebral endothelial cells, in this case alanine and glutathione, can facilitate drug delivery to the brain.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Alanina , Ácido Glutâmico , Encéfalo , Peptídeos/farmacologia , Peptídeos/química , Glutationa , Organoides
5.
Mol Pharm ; 20(1): 680-689, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36515396

RESUMO

Developing gene vectors with high transfection efficiency and low cytotoxicity to humans is crucial to improve gene therapy outcomes. This study set out to investigate the use of cationic polypeptide bilayer assemblies formed by coil-sheet poly(l-lysine)-block-poly(l-benzyl-cysteine) (PLL-b-PBLC) as gene vectors that present improved transfection efficiency, endosomal escape, and biocompatibility compared to PLL. The formation of the polyplexes was triggered by hydrogen bonding, hydrophobic interactions, and electrostatic association between the cationic PLL segments and the negatively charged plasmid encoding p53, resulting in self-assembled polypeptide chains. Transfection efficiency of these polyplexes increased with increments of PLL-to-PBLC block ratios, with PLL15-b-PBLC5 bilayers exhibiting the best in vitro transfection efficiency among all, suggesting that PLL-b-PBLC bilayer assemblies are efficient in the protection and stabilization of genes. The polypeptide bilayer gene vector reversed the cisplatin sensitivity of p53-null cancer cells by increasing apoptotic signaling. Consistent with in vitro results, mouse xenograft studies revealed that PLL15-b-PBLC5/plasmid encoding p53 therapy significantly suppressed tumor growth and enhanced low-dose cisplatin treatment, while extending survival of tumor-bearing mice and avoiding significant body weight loss. This study presents a feasible gene therapy that, combined with low-dose chemotherapeutic drugs, may treat genetically resistant cancers while reducing side effects in clinical patients.


Assuntos
Cisplatino , Neoplasias , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Peptídeos/química , Transfecção , Terapia Genética , Plasmídeos/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Polilisina/química
7.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010659

RESUMO

Several degenerative disorders of the central nervous system, including Parkinson's disease (PD), are related to the pathological aggregation of proteins. Antibodies against toxic disease proteins, such as α-synuclein (SNCA), are therefore being developed as possible therapeutics. In this work, one peptide (YVGSKTKEGVVHGVA) from SNCA was used as the epitope to construct magnetic molecularly imprinted composite nanoparticles (MMIPs). These composite nanoparticles were characterized by dynamic light scattering (DLS), high-performance liquid chromatography (HPLC), isothermal titration calorimetry (ITC), Brunauer-Emmett-Teller (BET) analysis, and superconducting quantum interference device (SQUID) analysis. Finally, the viability of brain endothelial cells that were treated with MMIPs was measured, and the extraction of SNCA from CRISPR/dCas9a-activated HEK293T cells from the in vitro model system was demonstrated for the therapeutic application of MMIPs.


Assuntos
Impressão Molecular , Nanopartículas , Células Endoteliais/metabolismo , Epitopos , Células HEK293 , Humanos , Impressão Molecular/métodos , alfa-Sinucleína/metabolismo
8.
Polymers (Basel) ; 14(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35683879

RESUMO

Poly(glycerol sebacate) (PGS), a soft, tough elastomer with excellent biocompatibility, has been exploited successfully in many tissue engineering applications. Although tunable to some extent, the rapid in vivo degradation kinetics of PGS is not compatible with the healing rate of some tissues. The incorporation of L-glutamic acid into a PGS network with an aim to retard the degradation rate of PGS through the formation of peptide bonds was conducted in this study. A series of poly(glycerol sebacate glutamate) (PGSE) containing various molar ratios of sebacic acid/L-glutamic acid were synthesized. Two kinds of amino-protected glutamic acids, Boc-L-glutamic acid and Z-L-glutamic acid were used to prepare controls that consist of no peptide bonds, denoted as PGSE-B and PGSE-Z, respectively. The prepolymers were characterized using 1H-NMR spectroscopy. Cured elastomers were characterized using FT-IR, DSC, TGA, mechanical testing, and contact angle measurement. In vitro enzymatic degradation of PGSE over a period of 28 days was investigated. FT-IR spectroscopy confirmed the formation of peptide bonds. The glass transition temperature for the elastomer was found to increase as the ratio of sebacic acid/glutamic acid was increased to four. The decomposition temperature of the elastomer decreased as the amount of glutamic acid was increased. PGSE exhibited less stiffness and larger elongation at break as the ratio of sebacic acid/glutamic acid was decreased. Notably, PGSE-Z was stiffer and had smaller elongation at break than PGSE and PGSE-B at the same molar ratio of monomers. The results of in vitro enzymatic degradation demonstrated that PGSE has a lower degradation rate than does PGS, whereas PGSE-B and PGSE-Z degrade at a greater rate than does PGS. SEM images suggest that the degradation of these crosslinked elastomers is due to surface erosion. The cytocompatibility of PGSE was considered acceptable although slightly lower than that of PGS. The altered mechanical properties and retarded degradation kinetics for PGSE reflect the influence of peptide bonds formed by the introduction of L-glutamic acid. PGSE displaying a lower degradation rate compared to that for PGS can be used as a scaffold material for the repair or regeneration of tissues that are featured by a low healing rate.

9.
Gels ; 8(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35735710

RESUMO

To study the self-assembly and hydrogel formation of the star-shaped graft copolypeptides with asymmetric topology, star-shaped poly(L-lysine) with various arm numbers were synthesized by using asymmetric polyglycerol dendrimers (PGDs) as the initiators and 1,1,3,3-tetramethylguanidine (TMG) as an activator for OH groups, followed by deprotection and grafting with indole or phenyl group on the side chain. The packing of the grafting moiety via non-covalent interactions not only facilitated the polypeptide segments to adopt more ordered conformations but also triggered the spontaneous hydrogelation. The hydrogelation ability was found to be correlated with polypeptide composition and topology. The star-shaped polypeptides with asymmetric topology exhibited poorer hydrogelation ability than those with symmetric topology due to the less efficient packing of the grafted moiety. The star-shaped polypeptides grafted with indole group on the side chain exhibited better hydrogelation ability than those grafted with phenyl group with the same arm number. This report demonstrated that the grafted moiety and polypeptide topology possessed the potential ability to modulate the polypeptide hydrogelation and hydrogel characteristics.

10.
Mater Sci Eng C Mater Biol Appl ; 131: 112484, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34857270

RESUMO

Neutrophil extracellular traps (NETs) are chromatin-based structures that are released from neutrophils during infections and prevent microbes from spreading in the body through efficient degradation of their composition. Based on this chromatin-driven strategy of capturing and killing bacteria, we designed NET-like structures using DNA and ZnO nanoparticles (NPs). DNA was first purified from kiwifruit and treated with HCl to increase hydroxyl groups in the opened-deoxylribose form. The carboxyl groups of citric acid were then thermally crosslinked with said hydroxyl and primary amine groups in DNA, forming DNA-HCl nanogels (NGs). ZnO NPs were then used as positively charged granule enzymes, adsorbed onto the DNA-HCl NG, obtaining ZnO/DNA-HCl NGs (with NET biomimicry). In an anti-inflammatory assay, ZnO/DNA-HCl NGs significantly inhibited TNF-α, IL-6, iNOS and COX-2 expression in LPS-stimulated Raw264.7 cells. Moreover, the ZnO/DNA-HCl NGs markedly alleviated clinical symptoms in LPS-induced mouse peritonitis. Finally, ZnO/DNA-HCl NGs suppressed E. coli from entering circulation in septic mice while prolonging their survival. Our results suggest that the ZnO/DNA-HCl NGs, which mimic NET-like structures in the blocking of bacteria-inducted inflammation, may be a potential therapeutic strategy for bacterial infections.


Assuntos
Armadilhas Extracelulares , Peritonite , Óxido de Zinco , Animais , DNA , Escherichia coli , Camundongos , Nanogéis , Neutrófilos , Peritonite/tratamento farmacológico
11.
Pharmaceutics ; 13(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834328

RESUMO

Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.

12.
Gels ; 7(3)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34563017

RESUMO

In this research, we studied the effect of polypeptide composition and topology on the hydrogelation of star-shaped block copolypeptides based on hydrophilic, coil poly(L-lysine)20 (s-PLL20) tethered with a hydrophobic, sheet-like polypeptide segment, which is poly(L-phenylalanine) (PPhe), poly(L-leucine) (PLeu), poly(L-valine) (PVal) or poly(L-alanine) (PAla) with a degree of polymerization (DP) about 5. We found that the PPhe, PLeu, and PVal segments are good hydrogelators to promote hydrogelation. The hydrogelation and hydrogel mechanical properties depend on the arm number and hydrophobic polypeptide segment, which are dictated by the amphiphilic balance between polypeptide blocks and the hydrophobic interactions/hydrogen bonding exerted by the hydrophobic polypeptide segment. The star-shaped topology could facilitate their hydrogelation due to the branching chains serving as multiple interacting depots between hydrophobic polypeptide segments. The 6-armed diblock copolypeptides have better hydrogelation ability than 3-armed ones and s-PLL-b-PPhe exhibits better hydrogelation ability than s-PLL-b-PVal and s-PLL-b-PLeu due to the additional cation-π and π-π interactions. This study highlights that polypeptide composition and topology could be additional parameters to manipulate polypeptide hydrogelation.

13.
Pharmaceutics ; 14(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35056983

RESUMO

Nanosized drug delivery systems targeting transporters of the blood-brain barrier (BBB) are promising carriers to enhance the penetration of therapeutics into the brain. The expression of solute carriers (SLC) is high and shows a specific pattern at the BBB. Here we show that targeting ligands ascorbic acid, leucine and glutathione on nanoparticles elevated the uptake of albumin cargo in cultured primary rat brain endothelial cells. Moreover, we demonstrated the ability of the triple-targeted nanovesicles to deliver their cargo into midbrain organoids after crossing the BBB model. The cellular uptake was temperature- and energy-dependent based on metabolic inhibition. The process was decreased by filipin and cytochalasin D, indicating that the cellular uptake of nanoparticles was partially mediated by endocytosis. The uptake of the cargo encapsulated in triple-targeted nanoparticles increased after modification of the negative zeta potential of endothelial cells by treatment with a cationic lipid or after cleaving the glycocalyx with an enzyme. We revealed that targeted nanoparticles elevated plasma membrane fluidity, indicating the fusion of nanovesicles with endothelial cell membranes. Our data indicate that labeling nanoparticles with three different ligands of multiple transporters of brain endothelial cells can promote the transfer and delivery of molecules across the BBB.

14.
Mater Sci Eng C Mater Biol Appl ; 114: 111025, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994007

RESUMO

Conventional chemotherapeutic drugs are nonselective and harmful toward normal tissues, causing severe side effects. Therefore, the development of chemotherapeutics that can target cancer cells and improve therapeutic efficacy is of high priority. Biomolecules isolated from nature serve as green solutions for biomedical use, solving biocompatibility and cytotoxicity issues in human bodies. Herein, we use kiwifruit-derived DNA to encapsulate doxorubicin (DOX) using crosslinkers, eventually forming DNA-DOX nanogels (NGs). Drug releasing assays, cell viability and anticancer effects were analyzed to evaluate the DNA NGs' applications. The amount of DOX released by the DOX-loaded DNA (DNA-DOX) NGs at acidic pH was higher than that of neutral pH, and high glutathione (GSH) concentration also triggered more DOX to release in cancer cells, demonstrating pH- and GSH-triggered drug release characteristics of the DNA NGs. The IC50 of DNA-DOX NGs in cancer cells was lower than that of free DOX. Moreover, DOX uptake of cancer cells and apoptotic death were enhanced by the DNA-DOX NGs compared to free DOX. The results suggest that the DNA NGs cross-linked via nitrogen bases of the nucleotides in DNA and presenting pH- and GSH-dependent drug releasing behavior can be alternative biocompatible drug delivery systems for anticancer strategies and other biomedical applications.


Assuntos
Antineoplásicos , Glutationa , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Sobrevivência Celular , Doxorrubicina/farmacologia , Portadores de Fármacos/farmacologia , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Nanogéis
15.
Colloids Surf B Biointerfaces ; 196: 111316, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32827950

RESUMO

Biomimetic hydrogels which possess good biocompatibility, high degradability, and low toxicity as well as good antibacterial activity against various bacteria would potentially be promising for biomaterial applications, such as wound healing, tissue engineering, and payload delivery systems. Herein, we report the synthesis and hydrogelation of L-Dopa conjugated (GPLD) polypeptides via a versatile strategy including enzymatic cross-linking or coordinated/oxidized cross-linking with Fe3+ ions and demonstrated the feasibility of loading cancer drug and metal NPs in hydrogel matrix. The drug-loaded hydrogel was simply prepared via coordinated/oxidized cross-linking by Fe3+ and H2O2 within short gelation time. Doxorubicin (DOX) was encapsulated in the hydrogel network through the formation of metal-DOX/catechol complexes. The catechol groups acted not only as the complexing depots for DOX encapsulation but also as cross-linking depots for hydrogel formation. The mechanical strength, swelling ratio, and degradability behavior could be tuned by varying Fe3+/H2O2 or enzyme/H2O2 concentration. The as-prepared hydrogel exhibited excellent pH-responsive drug release behavior and the ability to effectively kill cancer cells by pH-triggered release of DOX. We also demonstrated that the enzymatically cross-linked hydrogels loaded with metal nanoparticles (NPs) exhibiting excellent antimicrobial activities. This multifunctional hydrogel is promising for drug delivery and antimicrobial applications.


Assuntos
Gelatina , Hidrogéis , Antibacterianos/farmacologia , Biomimética , Doxorrubicina/farmacologia , Portadores de Fármacos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Levodopa
16.
Biomacromolecules ; 21(9): 3836-3846, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32790281

RESUMO

Cancer metastasis is a central oncology concern that worsens patient conditions and increases mortality in a short period of time. During metastatic events, mitochondria undergo specific physiological alterations that have emerged as notable therapeutic targets to counter cancer progression. In this study, we use drug-free, cationic peptide fibrillar assemblies (PFAs) formed by poly(L-Lysine)-block-poly(L-Threonine) (Lys-b-Thr) to target mitochondria. These PFAs interact with cellular and mitochondrial membranes via electrostatic interactions, resulting in membranolysis. Charge repulsion and hydrogen-bonding interactions exerted by Lys and Thr segments dictate the packing of the peptides and enable the PFAs to display enhanced membranolytic activity toward cancer cells. Cytochrome c (cyt c), endonuclease G, and apoptosis-inducing factor were released from mitochondria after treatment of lung cancer cells, subsequently inducing caspase-dependent and caspase-independent apoptotic pathways. A metastatic xenograft mouse model was used to show how the PFAs significantly suppressed lung metastasis and inhibited tumor growth, while avoiding significant body weight loss and mortality. Antimetastatic activities of PFAs are also demonstrated by in vitro inhibition of lung cancer cell migration and clonogenesis. Our results imply that the cationic PFAs achieved the intended and targeted mitochondrial damage, providing an efficient antimetastatic therapy.


Assuntos
Neoplasias Pulmonares , Animais , Apoptose , Caspases , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Mitocôndrias
17.
Mater Sci Eng C Mater Biol Appl ; 112: 110923, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409073

RESUMO

We report an efficient growth factor delivering system based on polypeptide/heparin composite hydrogels for wound healing application. Linear and star-shaped poly(l-lysine) (l-PLL and s-PLL) were chosen due to not only their cationic characteristics, facilitating the efficient complexation of negatively charged heparin, but also the ease to tune the physical and mechanical properties of as-prepared hydrogels simply by varying polypeptide topology and chain length. The results showed that polymer topology can be an additional parameter to tune hydrogel properties. Our experimental data showed that these composite hydrogels exhibited low hemolytic activity and good cell compatibility as well as excellent antibacterial activity, making them ideal as wound dressing materials. Unlike other heparin-based hydrogels, these composite hydrogels with heparin densely deposited on the surface can increase the stabilization and concentration of growth factor, which can facilitate the healing process as confirmed by our in vivo animal model. We believe that these PLL/heparin composite hydrogels are promising wound dressing materials and may have potential applications in other biomedical fields.


Assuntos
Antibacterianos/química , Heparina/química , Hidrogéis/química , Peptídeos/química , Cicatrização , Animais , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Polilisina/química , Pele/patologia , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos
18.
Int J Biol Macromol ; 159: 931-940, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32442567

RESUMO

Polypeptide-mediated silica mineralization is an attractive approach to prepare polypeptide/silica nanocomposites for enzyme immobilization. Herein, a facile approach for in situ immobilization of catalase (CAT) in polypeptide/silica nanocomposites is developed via the preparation of cross-linked polypeptide/enzyme microgels using an emulsion process followed by silica mineralization. The efficient protein immobilization under benign condition (25-28 °C, pH 7.0, 0.05 N) was evidenced by high immobilization yield (> 99%) and no protein leakage. Our data showed that the immobilized CAT exhibited prolonged reusability and storage stability compared to free one, suggesting that the composite networks not only provide suitable microenvironments to facilitate enzymatic reactions but also confine the enzyme macromolecules to prevent subunit dissociation. Star-shaped topology exhibited better coverage onto the enzyme than linear counterpart, leading to the superior reusability (relative activity >95% for 30 cycling number) and storage stability (relative activity >95% for 60 days) of the immobilized CAT (~ 14 mg/g of support). The substrate affinity and enzymatic reaction rate for the immobilized CAT were also influenced by silica content and polypeptide topology. This strategy may provide a feasible and inexpensive approach to fabricate polypeptide/silica nanocomposites, which would be promising materials in biotechnological fields such as enzyme immobilization.


Assuntos
Biomineralização , Catalase/química , Emulsões , Enzimas Imobilizadas/química , Nanocompostos/química , Peptídeos/química , Dióxido de Silício/química , Técnicas de Química Sintética , Ativação Enzimática , Estabilidade Enzimática
19.
Int J Biol Macromol ; 146: 1050-1059, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31726123

RESUMO

Hydrogels containing silver nanoparticles (AgNPs) were recently found to exhibit excellent antibacterial properties against both gram-negative/positive bacteria and fungi. In this study, we reported the synthesis of AgNPs-contained gelatin-polyethylene glycol-dopamine (AgNP-GPD) hydrogels via the in situ formation of AgNPs in GPD polypeptide solution, followed by an enzymatic cross-linking reaction to form hydrogels. The experimental results showed that the reducing reaction exerted by GPD polypeptides under physiological conditions can afford the formation of AgNPs in situ in the polypeptide solution without the need for additional reducing agents and/or processes such as UV or thermal treatments and then the hydrogelation of GPD polypeptide solution containing AgNPs were preceeded via enzymatic cross-linking reaction. It was found that the gelation time, hydrogel mechanical property, degree of swelling and degree of enzymatic degradation for both GPD and AgNP-GPD hydrogels can be tuned by varying enzyme/oxidative agent concentration, catechol content, and reducing reaction conditions such as reaction time and silver ion concentration. Importantly, AgNP-GPD hydrogels exhibit excellent antibacterial properties against gram-negative and gram-positive bacteria. This type of hydrogel is a promising biomaterial for biomedical applications including wound healing and tissue engineering.


Assuntos
Antibacterianos/farmacologia , Dopamina/química , Enzimas/metabolismo , Gelatina/química , Hidrogéis/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Prata/química , Animais , Bovinos , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Liofilização , Gelatina/síntese química , Hidrogéis/síntese química , Peróxido de Hidrogênio/química , Cinética , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microesferas , Peptídeos/síntese química , Peptídeos/química , Polietilenoglicóis/síntese química , Proteólise , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta
20.
Mater Sci Eng C Mater Biol Appl ; 105: 110101, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546461

RESUMO

Here we report the green synthesis of gelatin/protein hybrid nanogels containing gold nanoparticles (AuNPs) that collectively exhibit metal-enhanced luminescence/fluorescence (MEL/MEF). The gelatin/protein nanogels, prepared by genipin cross-linking of preformed gelatin/protein polyion complexes (PICs), exhibited sizes ranging between 50 and 200 nm, depending on the weight ratio of gelatin and protein. These nanogels serve as reducing and stabilizing agents for the AuNPs, allowing for nucleation in a gel network that exhibits colloidal stability and MEL/MEF. AuNP/gelatin/HRP and AuNP/gelatin/LTF nanogels presented an ~11-fold enhancement of bioluminescence in an HRP-luminol system and a ~50-fold fluorescence enhancement when compared to free LTF in cell uptake experiments. These hybrid nanogels show promise for optically enhanced diagnosis and other therapeutic applications.


Assuntos
Ouro/química , Química Verde , Luminescência , Medições Luminescentes , Nanopartículas Metálicas/química , Nanogéis/química , Animais , Camundongos , Células RAW 264.7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA