Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytometry A ; 103(11): 915-926, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37789738

RESUMO

Quantitative microscopy is a powerful method for performing phenotypic screens from which image-based profiling can extract a wealth of information, termed profiles. These profiles can be used to elucidate the changes in cellular phenotypes across cell populations from different patient samples or following genetic or chemical perturbations. One such image-based profiling method is the Cell Painting assay, which provides morphological insight through the imaging of eight cellular compartments. Here, we examine the performance of the Cell Painting assay across multiple high-throughput microscope systems and find that all are compatible with this assay. Furthermore, we determine independently for each microscope system the best performing settings, providing those who wish to adopt this assay an ideal starting point for their own assays. We also explore the impact of microscopy setting changes in the Cell Painting assay and find that few dramatically reduce the quality of a Cell Painting profile, regardless of the microscope used.


Assuntos
Bioensaio , Microscopia , Humanos , Microscopia/métodos , Bioensaio/métodos
2.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36824835

RESUMO

Quantitative microscopy is a powerful method for performing phenotypic screens from which image-based profiling can extract a wealth of information, termed profiles. These profiles can be used to elucidate the changes in cellular phenotypes across cell populations from different patient samples or following genetic or chemical perturbations. One such image-based profiling method is the Cell Painting assay, which provides morphological insight through the imaging of eight cellular compartments. Here, we examine the performance of the Cell Painting assay across multiple high-throughput microscope systems and find that all are compatible with this assay. Furthermore, we determine independently for each microscope system the best performing settings, providing those who wish to adopt this assay an ideal starting point for their own assays. We also explore the impact of microscopy setting changes in the Cell Painting assay and find that few dramatically reduce the quality of a Cell Painting profile, regardless of the microscope used.

3.
Mol Ther ; 27(11): 1974-1991, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31416777

RESUMO

Generated by gram-negative bacteria, lipopolysaccharides (LPSs) are one of the most abundant and potent immunomodulatory substances present in the intestinal lumen. Interaction of agonistic LPS with the host myeloid-differentiation-2/Toll-like receptor 4 (MD-2/TLR4) receptor complex results in nuclear factor κB (NF-κB) activation, followed by the robust induction of pro-inflammatory immune responses. Here we have isolated LPS from a common gut commensal, Bacteroides vulgatus mpk (BVMPK), which provides only weak agonistic activity. This weak agonistic activity leads to the amelioration of inflammatory immune responses in a mouse model for experimental colitis, and it was in sharp contrast to strong agonists and antagonists. In this context, the administration of BVMPK LPS into mice with severe intestinal inflammation re-established intestinal immune homeostasis within only 2 weeks, resulting in the clearance of all symptoms of inflammation. These inflammation-reducing properties of weak agonistic LPS are grounded in the induction of a special type of endotoxin tolerance via the MD-2/TLR4 receptor complex axis in intestinal lamina propria CD11c+ cells. Thus, weak agonistic LPS represents a promising agent to treat diseases involving pathological overactivation of the intestinal immune system, e.g., in inflammatory bowel diseases.


Assuntos
Homeostase/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/imunologia , Animais , Biomarcadores , Antígeno CD11c/metabolismo , Colite/etiologia , Colite/metabolismo , Colite/patologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Homeostase/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/efeitos dos fármacos , Lipídeo A/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Knockout , Tomografia por Emissão de Pósitrons
4.
Front Immunol ; 10: 3093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038631

RESUMO

B cells fulfill multifaceted functions that influence immune responses during health and disease. In autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, depletion of functional B cells results in an aggravation of disease in humans and respective mouse models. This could be due to a lack of a pivotal B cell subpopulation: regulatory B cells (Bregs). Although Bregs represent only a small proportion of all immune cells, they exhibit critical properties in regulating immune responses, thus contributing to the maintenance of immune homeostasis in healthy individuals. In this study, we report that the induction of Bregs is differentially triggered by the immunogenicity of the host microbiota. In comparative experiments with low immunogenic Bacteroides vulgatus and strong immunogenic Escherichia coli, we found that the induction and longevity of Bregs depend on strong Toll-like receptor activation mediated by antigens of strong immunogenic commensals. The potent B cell stimulation via E. coli led to a pronounced expression of suppressive molecules on the B cell surface and an increased production of anti-inflammatory cytokines like interleukin-10. These bacteria-primed Bregs were capable of efficiently inhibiting the maturation and function of dendritic cells (DCs), preventing the proliferation and polarization of T helper (Th)1 and Th17 cells while simultaneously promoting Th2 cell differentiation in vitro. In addition, Bregs facilitated the development of regulatory T cells (Tregs) resulting in a possible feedback cooperation to establish immune homeostasis. Moreover, the colonization of germfree wild type mice with E. coli but not B. vulgatus significantly reduced intestinal inflammatory processes in dextran sulfate sodium (DSS)-induced colitis associated with an increase induction of immune suppressive Bregs. The quantity of Bregs directly correlated with the severity of inflammation. These findings may provide new insights and therapeutic approaches for B cell-controlled treatments of microbiota-driven autoimmune disease.


Assuntos
Linfócitos B Reguladores/imunologia , Infecções por Bacteroides/imunologia , Bacteroides/fisiologia , Células Dendríticas/imunologia , Infecções por Escherichia coli/imunologia , Escherichia coli/fisiologia , Doenças Inflamatórias Intestinais/imunologia , Microbiota/imunologia , Linfócitos T Reguladores/imunologia , Células Th2/imunologia , Animais , Antígenos de Bactérias/imunologia , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Memória Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Gut Microbes ; 9(1): 1-12, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-28686482

RESUMO

The Gram negative intestinal symbiont Bacteroides vulgatus mpk is able to prevent from induction of colonic inflammation in Rag1-/- mice and promotes immune balance in Il2-/- mice. These inflammation-silencing effects are associated with B. vulgatus mpk-mediated induction of semi-mature dendritic cells, especially in the colonic lamina propria (cLP). However the beneficial interaction of bacteria with host immune cells is limited due to the existence of a large mucus layer covering the intestinal epithelium. How can intestinal bacteria overcome this physical barrier and contact the host immune system? One mechanism is the production of outer membrane vesicles (OMVs) via ubiquitous blebbing of the outer membrane. These proteoliposomes have the ability to traverse the mucus layer. Hence, OMVs play an important role in immunomodulation and the maintenance of a balanced gut microbiota. Here we demonstrate that the stimulation of bone marrow derived dendritic cells (BMDCs) with isolated OMVs originated from B. vulgatus mpk leads to the induction of a tolerant semi-mature phenotype. Thereby, microbe- associated molecular patterns (MAMPs) delivered by OMVs are crucial for the interaction and the resulting maturation of immune cells. Additional to the binding to host TLR4, a yet unknown ligand to TLR2 is indispensable for the conversion of immature BMDCs into a semi-mature state. Thus, crossing the epithelial mucus layer and directly contact host cells, OMV mediate cross-tolerance via the transport of various Toll-like receptor antigens. These features make OMVs to a key attribute of B. vulgatus mpk for a vigorous acellular prevention and treatment of systemic diseases.


Assuntos
Bacteroides/imunologia , Membrana Celular/ultraestrutura , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Exossomos/metabolismo , Tolerância Imunológica , Animais , Bacteroides/metabolismo , Bacteroides/ultraestrutura , Membrana Celular/metabolismo , Células Cultivadas , Escherichia coli/imunologia , Exossomos/imunologia , Células HEK293 , Humanos , Fatores Imunológicos/metabolismo , Interleucina-6/análise , Camundongos , Mutação , Transdução de Sinais/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/análise
6.
J Autoimmun ; 75: 82-95, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27484364

RESUMO

Cathepsin S (CTSS) is a lysosomal protease whose activity regulation is important for MHC-II signaling and subsequent activation of CD4+ T cell mediated immune responses. Dysregulation of its enzymatic activity or enhanced secretion into extracellular environments is associated with the induction or progression of several autoimmune diseases. Here we demonstrate that commensal intestinal bacteria influence secretion rates and intracellular activity of host CTSS and that symbiotic bacteria, i.e. Bacteroides vulgatus mpk, may actively regulate this process and help to maintain physiological levels of CTSS activities in order to prevent from induction of pathological inflammation. The symbiont-controlled regulation of CTSS activity is mediated by anticipating reactive oxygen species induction in dendritic cells which, in turn, maintains cystatin C (CysC) monomer binding to CTSS. CysC monomers are potent endogenous CTSS inhibitors. This Bacteroides vulgatus caused and CysC dependent CTSS activity regulation is involved in the generation of tolerant intestinal dendritic cells contributing to prevention of T-cell mediated induction of colonic inflammation. Taken together, we demonstrate that symbionts of the intestinal microbiota regulate host CTSS activity and secretion and might therefore be an attractive approach to deal with CTSS associated autoimmune diseases.


Assuntos
Bactérias/imunologia , Catepsinas/imunologia , Microbioma Gastrointestinal/imunologia , Simbiose/imunologia , Animais , Bacteroides/imunologia , Bacteroides/fisiologia , Infecções por Bacteroides/imunologia , Infecções por Bacteroides/microbiologia , Benzopiranos/farmacologia , Western Blotting , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Carbamatos/farmacologia , Catepsinas/antagonistas & inibidores , Catepsinas/genética , Células Cultivadas , Colite/imunologia , Colite/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/microbiologia , Microbioma Gastrointestinal/fisiologia , Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Tolerância Imunológica/imunologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Mol Nutr Food Res ; 58(1): 49-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24311544

RESUMO

Polyphenols are a broad class of compounds. Some are ingested in substantial quantities from nutritional sources, more are produced by medicinal plants, and some of them are taken as drugs. It is becoming clear, that a single polyphenol is impacting several cellular pathways. Thus, a network approach is becoming feasible, describing the interaction of a single polyphenol with cellular networks. Here we have selected icariin to draw a prototypic network of icariin activities. Icariin appears to be a promising drug to treat major age-related diseases, like neurodegeneration, memory and depressive disorders, chronic inflammation, diabetes, and osteoporosis. It interacts with several relevant pathways, like PDE, TGF-ß, MAPK, PPAR, NOS, IGF, Sirtuin, and others. Such networks will be useful to future comparative studies of complex effects of polyphenols.


Assuntos
Envelhecimento , Flavonoides/farmacologia , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/metabolismo , Expressão Gênica , Humanos , Inflamação/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Hepatopatias/genética , Doenças Musculares/tratamento farmacológico , Doenças Musculares/genética , Doenças Neurodegenerativas/tratamento farmacológico , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Osteoporose/tratamento farmacológico , PPAR alfa/genética , PPAR alfa/metabolismo , Polifenóis/farmacologia , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA