Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 663: 566-576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428114

RESUMO

Transition metal spinel oxides were engineered with active elements as bifunctional water splitting electrocatalysts to deliver superior intrinsic activity, stability, and improved conductivity to support green hydrogen production. In this study, we reported the ternary metal Ni-Fe-Co spinel oxide electrocatalysts prepared by defect engineering strategy with rich and deficient Na+ ions, termed NFCO-Na and NFCO, which suggest the formation of defects with Na+ forming tensile strain. The Na-rich NiFeCoO4 spinel oxide reveals lattice expansion, resulting in the formation of a defective crystal structure, suggesting higher electrocatalytic active sites. The spherical NFCO-Na electrocatalysts exhibit lower OER and HER overpotentials of 248 mV and 153 mV at 10 mA cm-2 and smaller Tafel slope values of about 78 mV dec-1 and 129 mV dec-1, respectively. Notably, the bifunctional NFCO-Na electrocatalyst requires a minimum cell voltage of about 1.67 V to drive a current density of 10 mA cm-2. The present work highlights the significant electrochemical activity of defect-engineered ternary metal oxides, which can be further upgraded as highly active electrocatalysts for water splitting applications.

2.
Chemosphere ; 352: 141233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266882

RESUMO

Hydrogen production from water splitting combined with renewable electricity can provide a viable solution to the energy crisis. A novel MoS2/NiS2/Ni3S4 heterostructure is designed as a bifunctional electrocatalyst by facile hydrothermal method to demonstrate excellent electrocatalytic performance towards overall water splitting applications. MoS2/NiS2/Ni3S4 heterostructure necessitates a low overpotential of 81 mV and 210 mV to attain a current density of 10 mA cm-2 during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Consequently, the MoS2/NiS2/Ni3S4 heterostructure-based electrolyzer shows a low cell voltage of 1.54 V at 10 mA cm-2. The present work highlights the significance of the heterostructure configuration of transition metal sulfide-based electrocatalysts for electrochemical overall water splitting applications.


Assuntos
Eletricidade , Molibdênio , Hidrogênio , Oxigênio , Sulfetos
3.
Artigo em Inglês | MEDLINE | ID: mdl-37795987

RESUMO

The utilization of hydrogen (H2) as a fuel source is hindered by the limited infrastructure and storage requirements. In contrast, ammonia (NH3) offers a promising solution as a hydrogen carrier due to its high energy density, liquid storage capacity, low cost, and sustainable manufacturing. NH3 has garnered significant attention as a key component in the development of next-generation refueling stations, aligning with the goal of a carbon-free economy. The electrochemical nitrogen reduction reaction (ENRR) enables the production of NH3 from nitrogen (N2) under ambient conditions. However, the low efficiency of the ENRR is limited by challenges such as the electron-stealing hydrogen evolution reaction (HER) and the breaking of the stable N2 triple bond. To address these limitations and enhance ENRR performance, we prepared Au@Cu2-xSe electrocatalysts with a core@shell structure using a seed-mediated growth method and a facile hot-injection method. The catalytic activity was evaluated using both an aqueous electrolyte of KOH solution and a nonaqueous electrolyte consisting of tetrahydrofuran (THF) solvent with lithium perchlorate and ethanol as proton donors. ENRR in both aqueous and nonaqueous electrolytes was facilitated by the synergistic interaction between Au and Cu2-xSe (copper selenide), forming an Ohmic junction between the metal and p-type semiconductor that effectively suppressed the HER. Furthermore, in nonaqueous conditions, the Cu vacancies in the Cu2-xSe layer of Au@Cu2-xSe promoted the formation of lithium nitride (Li3N), leading to improved NH3 production. The synergistic effect of Ohmic junctions and Cu vacancies in Au@Cu2-xSe led to significantly higher ammonia yield and faradaic efficiency (FE) in nonaqueous systems compared to those in aqueous conditions. The maximum NH3 yields were approximately 1.10 and 3.64 µg h-1 cm-2, with the corresponding FE of 2.24 and 67.52% for aqueous and nonaqueous electrolytes, respectively. This study demonstrates an attractive strategy for designing catalysts with increased ENRR activity by effectively engineering vacancies and heterojunctions in Cu-based electrocatalysts in both aqueous and nonaqueous media.

4.
Small ; 17(47): e2103613, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34677907

RESUMO

The integration of energy conversion and storage systems such as electrochemical water splitting (EWS) and rechargeable zinc-air battery (ZAB) is on the vision to provide a sustainable future with green energy resources. Herein, a unique strategy for decorating 3D tetragonal CoMn2 O4 on carbon cloth (CMO-U@CC) via a facile one-pot in situ hydrothermal process, is reported. The highly exposed morphology of 3D tetragons enhances the electrocatalytic activity of CMO-U@CC. This is the first demonstration of such a bifunctional activity of CMO-U@CC in an EWS system; it achieves a nominal cell voltage of 1.610 V @ 10 mA cm-2 . Similarly, the fabricated rechargeable ZAB delivers a specific capacity of 641.6 mAh gzn -1 , a power density of 135 mW cm-2 , and excellent cyclic stability (50 h @ 10 mA cm-2 ). Additionally, a series of flexible solid-state ZABs are fabricated and employed to power the assembled CMO-U@CC-based water electrolyzer. To the best of the authors' knowledge, this is the first demonstration of an in situ-grown binder-free CMO-U@CC as a flexible multifunctional electrocatalyst for a built-in integrated rechargeable ZAB-powered EWS system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA