Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 218: 115855, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866804

RESUMO

BACKGROUND: Mitochondrial dysfunction is a well-established result of acute kidney injury (AKI). Previously, we identified that 5-hydroxytryptamine 1F (5-HT1F) receptor agonism with lasmiditan induces mitochondrial biogenesis (MB) and improves renal vasculature and function in an AKI mouse model. We hypothesize that lasmiditan also modulates mitochondrial dynamics and mitophagy in a mouse model of AKI. METHODS: Male mice were subjected to renal ischemia/reperfusion (I/R) and treated daily with lasmiditan (0.3 mg/kg) or vehicle beginning 24 h after injury for 3 or 6d. Serum creatinine was measured to estimate glomerular filtration. Electron microscopy was used to assess mitochondrial morphology and mitophagy. Mitochondrial-related protein were confirmed with immunoblotting. Mitochondrial function was assessed with ATP measurements. RESULTS: Lasmiditan treatment improved mitochondrial and kidney recovery as early as 3d post-AKI, as evidenced by increased ATP, and decreased serum creatinine, respectively. Electron micrographs of renal cortices revealed that lasmiditan also decreased mitochondrial damage and increased mitochondrial area and size by 6d after I/R injury. Additionally, lasmiditan treatment increased mitolysosomes by 3d, indicating induction of mitophagy. Phosphorylation of mitophagy-related proteins were also increased in the renal cortices of lasmiditan-treated AKI mice 3d after I/R injury, whereas fusion-related proteins were increased at 6d after I/R injury. CONCLUSION: These data reveal that lasmiditan accelerates renal recovery, restores normal mitochondrial membrane and cristae morphology, decreases excessive mitochondrial fission, and accelerates mitophagy post-AKI in a time-dependent manner, establishing mitochondrial function and recovery from AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Creatinina/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Modelos Animais de Doenças , Trifosfato de Adenosina/metabolismo
2.
Front Cardiovasc Med ; 10: 1114726, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844728

RESUMO

During an episode of acute kidney injury (AKI), a sudden and rapid decline in renal function is often accompanied by a persistent reduction in mitochondrial function, microvasculature dysfunction/rarefaction, and tubular epithelial injury/necrosis. Additionally, patients who have experienced an AKI are at an elevated risk of developing other progressive renal, cardiovascular, and cardiorenal related diseases. While restoration of the microvasculature is imperative for oxygen and nutrient delivery/transport during proper renal repair processes, the mechanism(s) by which neovascularization and/or inhibition of microvascular dysfunction improves renal recovery remain understudied. Interestingly, pharmacological stimulation of mitochondrial biogenesis (MB) post-AKI has been shown to restore mitochondrial and renal function in mice. Thus, targeting MB pathways in microvasculature endothelial cell (MV-EC) may provide a novel strategy to improve renal vascular function and repair processes post-AKI. However, limitations to studying such mechanisms include a lack of commercially available primary renal peritubular MV-ECs, the variability in both purity and outgrowth of primary renal MV-EC in monoculture, the tendency of primary renal MV-ECs to undergo phenotypic loss in primary monoculture, and a limited quantity of published protocols to obtain primary renal peritubular MV-ECs. Thus, we focused on refining the isolation and phenotypic retention of mouse renal peritubular endothelial cells (MRPEC) for future physiological and pharmacological based studies. Here, we present a refined isolation method that augments the purity, outgrowth, and phenotypic retention of primary MRPEC monocultures by utilizing a collagenase type I enzymatic digestion, CD326+ (EPCAM) magnetic microbead epithelial cell depletion, and two CD146+ (MCAM) magnetic microbead purification cycles to achieve a monoculture MRPEC purity of ≅ 91-99% by all markers evaluated.

3.
Am J Physiol Renal Physiol ; 324(1): F56-F63, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326468

RESUMO

Acute kidney injury (AKI) involves rapid loss of renal function and occurs in 8-16% of hospitalized patients. AKI can be induced by drugs, sepsis, and ischemia-reperfusion (I/R). Hallmarks of AKI include mitochondrial and microvasculature dysfunction as well as renal tubular injury. There is currently no available therapeutic for AKI. Previously, our group identified that serotonin (5-HT)1F receptor agonism with lasmiditan accelerated endothelial cell recovery and induced mitochondrial biogenesis (MB) in vitro. We hypothesized that lasmiditan, a Federal Drug Administration-approved drug, would induce MB and improve microvascular and renal function in a mouse model of AKI. Male mice were subjected to renal I/R and treated with lasmiditan (0.3 mg/kg) or vehicle beginning 24 h after injury and then daily until euthanasia at 6 or 12 days. Serum creatinine was measured to estimate glomerular filtration rate. The renal cortex was assessed for mitochondrial density, vascular permeability and integrity, tubular damage, and interstitial fibrosis. Lasmiditan increased mitochondrial number (1.4-fold) in renal cortices. At 6 days, serum creatinine decreased 41% in the I/R group and 72% with lasmiditan. At 6 or 12 days, kidney injury molecule-1 increased in the I/R group and decreased 50% with lasmiditan. At 12 days, interstitial fibrosis decreased with lasmiditan by 50% and collagen type 1 by 38%. Evan's blue dye leakage increased 2.5-fold in the I/R group and was restored with lasmiditan. The tight junction proteins zonula occludens-1, claudin-2, and claudin-5 decreased in the I/R group and recovered with lasmiditan. At 6 or 12 days, peroxisome proliferator-activated receptor-γ coactivator-1α and electron transport chain complexes increased only with lasmiditan. In conclusion, lasmiditan treatment beginning AKI induces MB, attenuated vascular and tubular injury, decreased interstitial fibrosis, and lowered serum creatinine. Given that lasmiditan is a Federal Drug Administration-approved drug, these preclinical data support repurposing lasmiditan as a therapeutic for AKI.NEW & NOTEWORTHY AKI pathology involves a rapid decline in kidney function and occurs in 8-16% of hospitalized patients. There is currently no therapeutic for AKI. AKI results in mitochondria dysfunction, microvasculature injury, and loss of renal tubular function. In an I/R-induced AKI mouse model, treatment with the FDA-approved 5-HT1F receptor-selective agonist lasmiditan induced mitochondrial biogenesis, improved vascular integrity, reduced fibrosis, and reduced proximal tubule damage. These data support repurposing lasmiditan for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Masculino , Animais , Camundongos , Biogênese de Organelas , Creatinina/metabolismo , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/metabolismo , Rim/metabolismo , Traumatismo por Reperfusão/patologia , Isquemia/metabolismo , Modelos Animais de Doenças , Fibrose
4.
J Vasc Access ; 24(4): 674-682, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34553619

RESUMO

BACKGROUND: Although tunneled dialysis catheters (TDC) are far from ideal, they still represent the main form of vascular access for most patients beginning dialysis. Catheters are easy to place and allow patients instant access to dialysis, but regardless of these benefits, catheters are associated with a high incidence of significant complications like bloodstream infections, central venous stenosis, thrombosis, and dysfunction. In the present study, we aim to describe and characterize a swine model of catheter dysfunction and bloodstream infection, that recreates the clinical scenario, to help to serve as a platform to develop therapeutic innovations for this important clinical problem. METHODS: Six Yorkshire cross pigs were used in this study. Non-coated commercial catheters were implanted in the external jugular recreating the main features of common clinical practice. Catheters were aseptically accessed twice a week for a mock dialysis procedure (flushing in and out) to assess for and identify catheter dysfunction. Animals were monitored daily for infections; once detected, blood samples were collected for bacterial culture and antibiograms. Study animals were euthanized when nonresponsive to treatment. Tissue samples were collected in a standardized fashion for macroscopic inspection and histological analysis. RESULTS: The data analysis revealed an early onset of infection with a median time to infection of 9 days, 40% of the isolates were polymicrobial, and the average time to euthanasia was 20.16 ± 7.3 days. Median time to catheter dysfunction onset was 6 days post-implantation. Postmortem dissection revealed external fibrin sheath and internal thrombosis as the main causes of catheter dysfunction. There was also evidence of central venous stenosis with positive cells for αSMA, CD68, Ki67, Smoothelin, and Vimentin within the venous neointima. CONCLUSIONS: The described model represents a reliable and reproducible large animal model of catheter dysfunction and bloodstream infection, which recreates all the main complications of TDC's and so could be used as a validated large animal model to develop new therapies for TDC related infection, thrombosis/dysfunction and central venous stenosis.


Assuntos
Infecções Relacionadas a Cateter , Cateterismo Venoso Central , Cateteres Venosos Centrais , Sepse , Trombose , Doenças Vasculares , Humanos , Suínos , Animais , Cateterismo Venoso Central/efeitos adversos , Cateterismo Venoso Central/métodos , Diálise Renal/efeitos adversos , Constrição Patológica , Cateteres Venosos Centrais/efeitos adversos , Infecções Relacionadas a Cateter/diagnóstico , Infecções Relacionadas a Cateter/terapia , Doenças Vasculares/etiologia , Trombose/etiologia , Trombose/terapia , Cateteres de Demora/efeitos adversos , Estudos Retrospectivos
5.
Kidney Int ; 102(5): 1073-1089, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779607

RESUMO

The ß2 adrenergic receptor agonist, formoterol, is an inducer of mitochondrial biogenesis and restorer of mitochondrial and kidney function in acute and chronic models of kidney injury. Unfortunately, systemic administration of formoterol has the potential for adverse cardiovascular effects, increased heart rate, and decreased blood pressure. To minimize these effects, we developed biodegradable and biocompatible polymeric nanoparticles containing formoterol that target the kidney, thereby decreasing the effective dose, and lessen cardiovascular effects while restoring kidney function after injury. Male C57Bl/6 mice, treated with these nanoparticles daily, had reduced ischemia-reperfusion-induced serum creatinine and kidney cortex kidney injury molecule-1 levels by 78% and 73% respectively, compared to control mice six days after injury. With nanoparticle therapy, kidney cortical mitochondrial number and proteins reduced by ischemic injury, recovered to levels of sham-operated mice. Tubular necrosis was reduced 69% with nanoparticles treatment. Nanoparticles improved kidney recovery even when the dosing frequency was reduced from daily to two days per week. Finally, compared to treatment with formoterol-free drug alone, these nanoparticles did not increase heart rate nor decrease blood pressure. Thus, targeted kidney delivery of formoterol-containing nanoparticles is an improvement in standard formoterol therapy for ischemia-reperfusion-induced acute kidney injuries by decreasing the dose, dosing frequency, and cardiac side effects.


Assuntos
Injúria Renal Aguda , Nanopartículas , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Fumarato de Formoterol/farmacologia , Creatinina/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Rim , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Camundongos Endogâmicos C57BL , Reperfusão , Isquemia/metabolismo , Agonistas Adrenérgicos/metabolismo , Agonistas Adrenérgicos/farmacologia , Agonistas Adrenérgicos/uso terapêutico
6.
Am J Physiol Renal Physiol ; 318(2): F322-F328, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841384

RESUMO

Previous studies have shown that cGMP increases mitochondrial biogenesis (MB). Our laboratory has determined that formoterol and LY344864, agonists of the ß2-adrenergic receptor and 5-HT1F receptor, respectively, signal MB in a soluble guanylyl cyclase (sGC)-dependent manner. However, the pathway between cGMP and MB produced by these pharmacological agents in renal proximal tubule cells (RPTCs) and the kidney has not been determined. In the present study, we showed that treatment of RPTCs with formoterol, LY344864, or riociguat, a sGC stimulator, induces MB through protein kinase G (PKG), a target of cGMP, and p38, an associated downstream target of PKG and a regulator of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in RPTCs. We also examined if p38 plays a role in PGC-1α phosphorylation in vivo. Administration of l-skepinone, a potent and specific inhibitor of p38α and p38ß, to naïve mice inhibited phosphorylated PGC-1α localization in the nuclear fraction of the renal cortex. Taken together, we demonstrated a pathway, sGC/cGMP/PKG/p38/PGC-1α, for pharmacological induction of MB and the importance of p38 in this pathway.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Rim/enzimologia , Mitocôndrias/metabolismo , Biogênese de Organelas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Carbazóis/farmacologia , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Dibenzocicloeptenos/farmacologia , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Feminino , Fluorbenzenos/farmacologia , Fumarato de Formoterol/farmacologia , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Coelhos , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
7.
Cancer Prev Res (Phila) ; 11(5): 265-278, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29437671

RESUMO

An urgent need exists for the development of more efficacious molecular strategies targeting nonmelanoma skin cancer (NMSC), the most common malignancy worldwide. Inflammatory signaling downstream of Toll-like receptor 4 (TLR4) has been implicated in several forms of tumorigenesis, yet its role in solar UV-induced skin carcinogenesis remains undefined. We have previously shown in keratinocyte cell culture and SKH-1 mouse epidermis that topical application of the specific TLR4 antagonist resatorvid (TAK-242) blocks acute UV-induced AP-1 and NF-κB signaling, associated with downregulation of inflammatory mediators and MAP kinase phosphorylation. We therefore explored TLR4 as a novel target for chemoprevention of UV-induced NMSC. We selected the clinical TLR4 antagonist resatorvid based upon target specificity, potency, and physicochemical properties. Here, we confirm using ex vivo permeability assays that topical resatorvid can be effectively delivered to skin, and using in vivo studies that topical resatorvid can block UV-induced AP-1 activation in mouse epidermis. We also report that in a UV-induced skin tumorigenesis model, topical resatorvid displays potent photochemopreventive activity, significantly suppressing tumor area and multiplicity. Tumors harvested from resatorvid-treated mice display reduced activity of UV-associated signaling pathways and a corresponding increase in apoptosis compared with tumors from control animals. Further mechanistic insight on resatorvid-based photochemoprevention was obtained from unsupervised hierarchical clustering analysis of protein readouts via reverse-phase protein microarray revealing a significant attenuation of key UV-induced proteomic changes by resatorvid in chronically treated high-risk SKH-1 skin prior to tumorigenesis. Taken together, our data identify TLR4 as a novel molecular target for topical photochemoprevention of NMSC. Cancer Prev Res; 11(5); 265-78. ©2018 AACRSee related editorial by Sfanos, p. 251.


Assuntos
Carcinogênese/efeitos dos fármacos , Neoplasias Cutâneas/prevenção & controle , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Raios Ultravioleta/efeitos adversos , Administração Cutânea , Animais , Carcinogênese/efeitos da radiação , Avaliação Pré-Clínica de Medicamentos , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/efeitos da radiação , Feminino , Humanos , Camundongos , Camundongos Pelados , Camundongos Transgênicos , NF-kappa B/metabolismo , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/prevenção & controle , Permeabilidade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Neoplasias Cutâneas/etiologia , Sulfonamidas/uso terapêutico , Receptor 4 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo
8.
Photochem Photobiol ; 92(6): 816-825, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27859308

RESUMO

Cutaneous exposure to solar ultraviolet (UV) radiation is a major causative factor in skin carcinogenesis, and improved molecular strategies for efficacious chemoprevention of nonmelanoma skin cancer (NMSC) are urgently needed. Toll-like receptor 4 (TLR4) signaling has been shown to drive skin inflammation, photoimmunosuppression, and chemical carcinogenesis. Here we have examined the feasibility of genetic and pharmacological antagonism targeting cutaneous TLR4 for the suppression of UV-induced NF-κB and AP-1 signaling in keratinocytes and mouse skin. Using immunohistochemical and proteomic microarray analysis of human skin, we demonstrate for the first time that a significant increase in expression of TLR4 occurs in keratinocytes during the progression from normal skin to actinic keratosis, also detectible during further progression to squamous cell carcinoma. Next, we demonstrate that siRNA-based genetic TLR4 inhibition blocks UV-induced stress signaling in cultured keratinocytes. Importantly, we observed that resatorvid (TAK-242), a molecularly targeted clinical TLR4 antagonist, blocks UV-induced NF-κB and MAP kinase/AP-1 activity and cytokine expression (Il-6, Il-8, and Il-10) in cultured keratinocytes and in topically treated murine skin. Taken together, our data reveal that pharmacological TLR4 antagonism can suppress UV-induced cutaneous signaling, and future experiments will explore the potential of TLR4-directed strategies for prevention of NMSC.


Assuntos
Queratinócitos/efeitos dos fármacos , NF-kappa B/fisiologia , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Transcrição AP-1/fisiologia , Animais , Humanos , Queratinócitos/metabolismo , Camundongos , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos da radiação , Raios Ultravioleta
9.
Arch Dermatol Res ; 308(4): 239-48, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26873374

RESUMO

Mitochondria are the major source of reactive oxygen species (ROS) in fibroblasts which are thought to be crucial regulators of wound healing with a potential to affect the expression of nuclear genes involved in this process. ROS generated by mitochondria are involved in all stages of tissue repair process but the regulation of ROS-generating system in fibroblasts still remains poorly understood. The purpose of this study was to better understand molecular mechanisms of how the regulation of ROS levels generated by mitochondria may influence the process of wound repair. Cybrid model system of mtDNA variations was used to study the functional consequences of altered ROS levels on wound healing responses in a uniform nuclear background of cultured ρ(0) fibroblasts. Mitochondrial ROS in cybrids were modulated by antioxidants that quench ROS to examine their ability to close the wound. Real-time PCR arrays were used to investigate whether ROS generated by specific mtDNA variants have the ability to alter expression of some key nuclear-encoded genes central to the wound healing response and oxidative stress. Our data suggest levels of mitochondrial ROS affect expression of some nuclear encoded genes central to wound healing response and oxidative stress and modulation of mitochondrial ROS by antioxidants positively affects in vitro process of wound closure. Thus, regulation of mitochondrial ROS-generating system in fibroblasts can be used as effective natural redox-based strategy to help treat non-healing wounds.


Assuntos
Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fenômenos Fisiológicos da Pele , Cicatrização/fisiologia , Animais , Antioxidantes/metabolismo , Proliferação de Células , DNA Mitocondrial/genética , Camundongos , Camundongos Endogâmicos BALB C , Pele/citologia , Pele/lesões , Pele/metabolismo
10.
Cancer Prev Res (Phila) ; 9(3): 215-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26801880

RESUMO

The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced nonmelanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared with those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here, we explored the use of topical rapamycin as a chemopreventive agent in the context of solar-simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared with controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared with vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Neoplasias Cutâneas/prevenção & controle , Administração Tópica , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos da radiação , Western Blotting , Feminino , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Camundongos , Camundongos Pelados , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos da radiação , Sirolimo/administração & dosagem , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Sulfonamidas/farmacologia , Luz Solar/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo , Tiadiazóis/farmacologia
11.
Mol Carcinog ; 54(11): 1513-20, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-25307283

RESUMO

Sulforaphane is a natural product found in broccoli, which is known to exert many different molecular effects in the cell, including inhibition of histone deacetylase (HDAC) enzymes. Here, we examine for the first time the potential for sulforaphane to inhibit HDACs in HaCaT keratinocytes and compare our results with those found using HCT116 colon cancer cells. Significant inhibition of HDAC activity in HCT116 nuclear extracts required prolonged exposure to sulforaphane in the presence of serum. Under the same conditions HaCaT nuclear extracts did not exhibit reduced HDAC activity with sulforaphane treatment. Both cell types displayed down-regulation of HDAC protein levels by sulforaphane treatment. Despite these reductions in HDAC family member protein levels, acetylation of marker proteins (acetylated Histone H3, H4, and tubulin) was decreased by sulforaphane treatment. Time-course analysis revealed that HDAC6, HDAC3, and acetylated histone H3 protein levels are significantly inhibited as early as 6 h into sulforaphane treatment. Transcript levels of HDAC6 are also suppressed after 48 h of treatment. These results suggest that HDAC activity noted in nuclear extracts is not always translated as expected to target protein acetylation patterns, despite dramatic inhibition of some HDAC protein levels. In addition, our data suggest that keratinocytes are at least partially resistant to the nuclear HDAC inhibitory effects of sulforaphane, which is exhibited in HCT116 and other cells.


Assuntos
Anticarcinógenos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Isotiocianatos/farmacologia , Acetilação/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Células HCT116 , Desacetilase 6 de Histona , Histonas/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Sulfóxidos
12.
Mutat Res ; 769: 49-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25177208

RESUMO

mtDNA mutations are common in human cancers and are thought to contribute to the process of neoplasia. We examined the role of mtDNA mutations in skin cancer by generating fibroblast cybrids harboring a mutation in the gene encoding the mitochondrial tRNA for arginine. This somatic mutation (9821insA) was previously reported in UV-induced hyperkeratotic skin tumors in hairless mice and confers specific tumorigenic phenotypes to mutant cybrids. Microarray analysis revealed and RT-PCR along with Western blot analysis confirmed the up-regulation of CCL20 and its receptor CCR6 in mtBALB haplotype containing the mt-Tr 9821insA allele compared to wild type mtB6 haplotype. Based on reported role of CCL20 in cancer progression we examined whether the hyper-proliferation and enhanced motility of mtBALB haplotype would be associated with CCL20 levels. Treatment of both genotypes with recombinant CCL20 (rmCCL20) resulted in enhanced growth and motility of mtB6 cybrids. Furthermore, the acquired somatic alteration increased the in vivo tumor growth of mtBALB cybrids through the up-regulation of CCL20 since neutralizing antibody significantly decreased in vivo tumor growth of these cells; and tumors from anti-CCL20 treated mice injected with mtBALB cybrids showed significantly decreased CCL20 levels. When rmCCL20 or mtBALB cybrids were used as chemotactic stimuli, mtB6 cybrids showed increased motility while anti-CCL20 antibody decreased the migration and in vivo tumor growth of mtBALB cybrids. Moreover, the inhibitors of MAPK signaling and NF-κB activation inhibited CCL20 expression in mtBALB cybrids and decreased their migratory capabilities. Thus, acquired mtDNA mutations may promote tumorigenic phenotypes through up-regulation of chemokine CCL20.


Assuntos
Carcinogênese/genética , Quimiocina CCL20/genética , DNA Mitocondrial/genética , Células Híbridas/metabolismo , Mutação , Animais , Sequência de Bases , Carcinogênese/metabolismo , Células Cultivadas , Quimiocina CCL20/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Fenótipo , Regulação para Cima/genética
13.
Arch Biochem Biophys ; 558: 143-52, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25004464

RESUMO

One of the primary components of the East Indian sandalwood oil (EISO) is α-santalol, a molecule that has been investigated for its potential use as a chemopreventive agent in skin cancer. Although there is some evidence that α-santalol could be an effective chemopreventive agent, to date, purified EISO has not been extensively investigated even though it is widely used in cultures around the world for its health benefits as well as for its fragrance and as a cosmetic. In the current study, we show for the first time that EISO-treatment of HaCaT keratinocytes results in a blockade of cell cycle progression as well as a concentration-dependent inhibition of UV-induced AP-1 activity, two major cellular effects known to drive skin carcinogenesis. Unlike many chemopreventive agents, these effects were not mediated through an inhibition of signaling upstream of AP-1, as EISO treatment did not inhibit UV-induced Akt or MAPK activity. Low concentrations of EISO were found to induce HaCaT cell death, although not through apoptosis as annexin V and PARP cleavage were not found to increase with EISO treatment. However, plasma membrane integrity was severely compromised in EISO-treated cells, which may have led to cleavage of LC3 and the induction of autophagy. These effects were more pronounced in cells stimulated to proliferate with bovine pituitary extract and EGF prior to receiving EISO. Together, these effects suggest that EISO may exert beneficial effects upon skin, reducing the likelihood of promotion of pre-cancerous cells to actinic keratosis (AK) and skin cancer.


Assuntos
Anticarcinógenos/farmacologia , Autofagia/efeitos dos fármacos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Medicina Tradicional , Óleos de Plantas/farmacologia , Sesquiterpenos/farmacologia , Animais , Bovinos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quimioprevenção , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteólise/efeitos dos fármacos , Fator de Transcrição AP-1/antagonistas & inibidores
14.
J Exp Bot ; 65(15): 4217-39, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24821950

RESUMO

Plant growth is continuous and modular, a combination that allows morphogenesis by cell division and elongation and serves to facilitate adaptation to changing environments. The pleiotropic phenotypes of the harlequin (hlq) mutant, isolated on the basis of ectopic expression of the abscisic acid (ABA)- and auxin-inducible proDc3:GUS reporter gene, were previously characterized. Mutants are skotomorphogenic, have deformed and collapsed epidermal cells which accumulate callose and starch, cell walls abundant in pectins and cell wall proteins, and abnormal and reduced root hairs and leaf trichomes. hlq and two additional alleles that vary in their phenotypic severity of starch accumulation in the light and dark have been isolated, and it is shown that they are alleles of bin3/hyp6/rhl3/Topoisomerase6B. Mutants and inhibitors affecting the cell wall phenocopy several of the traits displayed in hlq. A microarray analysis was performed, and coordinated expression of physically adjacent pairs/sets of genes was observed in hlq, suggesting a direct effect on chromatin. Histones, WRKY and IAA/AUX transcription factors, aquaporins, and components of ubiquitin-E3-ligase-mediated proteolysis, and ABA or biotic stress response markers as well as proteins involved in cellular processes affecting carbon partitioning into secondary metabolites were also identified. A comparative analysis was performed of the hlq transcriptome with other previously published TopoVI mutant transcriptomes, namely bin3, bin5, and caa39 mutants, and limited concordance between data sets was found, suggesting indirect or genotype-specific effects. The results shed light on the molecular mechanisms underlying the det/cop/fus-like pleiotropic phenotypes of hlq and support a broader role for TopoVI regulation of chromatin remodelling to mediate development in response to environmental and hormonal signals.


Assuntos
Arabidopsis/enzimologia , Montagem e Desmontagem da Cromatina , DNA Topoisomerase IV/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Crescimento Celular , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Pleiotropia Genética , Luz , Mutação , Epiderme Vegetal/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Metabolismo Secundário , Amido/metabolismo
15.
Exp Cell Res ; 319(5): 750-60, 2013 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-23220213

RESUMO

The CyP40 protein encoded by PPID gene is a member of the peptidyl-prolyl cis-trans isomerase (PPIase) family. PPIases catalyze the cis-trans isomerization of proline imidic peptide bonds in oligopeptides and accelerate the folding of proteins. The CyP40 protein has been shown to possess PPIase activity and, similar to other family members, can bind to the immunosuppressant drug cyclosporin A (CsA). In this study, we created keratinocyte cell lines with CyP40 being stably knocked down using viral particles containing shRNA for CyP40 which knocked down the expression level of CyP40 transcripts by 90-99%. The proliferation rates of the cell lines with silenced CyP40 were decreased compared to the control cells. After UVA irradiation, the rate of apoptosis was found to be significantly lower in CyP40 silenced cell lines than it was in control cells. Moreover, mitochondrial membrane potential (MMP) was found to be less dissipated and mitochondrial permeability transition pore (MPTP) less active in cells with knocked down CyP40 than in control cells after UVA irradiation. Also, less mitochondrial superoxide was detected in the cells with silenced CyP40 compared to control cells after UVA exposure. Moreover, silencing of CyP40 partially modulates expression of key genes involved in mitochondrial pore formation including CyPD, ANTs and VDAC family members. The ability of CyP40 to regulate UV induced apoptosis implicates this protein as a potential target for therapy in cancer cells.


Assuntos
Apoptose/efeitos da radiação , Ciclofilinas/metabolismo , Queratinócitos/patologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Western Blotting , Proliferação de Células/efeitos da radiação , Células Cultivadas , Peptidil-Prolil Isomerase F , Ciclofilinas/antagonistas & inibidores , Ciclofilinas/genética , Citometria de Fluxo , Humanos , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Proteínas de Transporte da Membrana Mitocondrial/efeitos da radiação , Poro de Transição de Permeabilidade Mitocondrial , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Photochem Photobiol B ; 113: 42-50, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22673012

RESUMO

Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol compound, is derived from natural products such as the skin of red grapes, blueberries and cranberries. Resveratrol not only exhibits antioxidant, cardioprotection, and anti-aging properties, but can also inhibit cancer cell growth and induce apoptosis. It has been shown that resveratrol inhibits the activation of Nf-κB and subsequently down regulates the expression of Nf-κB regulated genes such as interleukin-2 and Bcl-2, leading to cell cycle arrest and increased apoptosis in multiple myeloma cells. In the skin, resveratrol has been reported to sensitize keratinocytes to UVA induced apoptosis. However, the effect of resveratrol on opening of the mitochondrial permeability transition pore has not been previously examined. Our data show that UVA (14 J/cm(2)) along with resveratrol causes massive oxidative stress in mitochondria. As a consequence of oxidative stress, the mitochondrial membrane potential decreases which results in opening of the mitochondrial pores ultimately leading to apoptosis in human keratinocytes. These results may have clinical implications for development of future chemotherapeutic treatment for tumors of the skin.


Assuntos
Apoptose/efeitos da radiação , Queratinócitos/efeitos da radiação , Mitocôndrias/efeitos da radiação , Proteínas de Transporte da Membrana Mitocondrial/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Estilbenos/farmacologia , Raios Ultravioleta , Apoptose/efeitos dos fármacos , Células HEK293 , Humanos , Queratinócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Estresse Oxidativo/efeitos dos fármacos , Resveratrol
17.
Exp Cell Res ; 318(17): 2215-25, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22705584

RESUMO

We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarray analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-κB (NF-κB) is a key transcription factor for production of MMPs. An inhibitor of NF-κB activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-κB in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids.


Assuntos
Núcleo Celular/genética , Transformação Celular Neoplásica/patologia , DNA Mitocondrial/genética , Metaloproteinase 9 da Matriz/metabolismo , Mitocôndrias/patologia , NF-kappa B/metabolismo , Neoplasias Cutâneas/patologia , Animais , Apoptose/efeitos dos fármacos , Movimento Celular , Núcleo Celular/metabolismo , Transformação Celular Neoplásica/genética , Células Cultivadas , Dipeptídeos/farmacologia , Metaloproteinase 9 da Matriz/genética , Inibidores de Metaloproteinases de Matriz , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mutação/genética , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Nitrilas/farmacologia , Fenótipo , Inibidores de Proteases/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Cutâneas/genética , Sulfonas/farmacologia
18.
Plant Biotechnol J ; 10(4): 453-64, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22284568

RESUMO

The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1-expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and preparatory physiological responses. In addition to the increased accumulation of its own transcript, SaVHAc1 expression led to increased accumulation of messages of other native genes in rice, especially those involved in cation transport and ABA signalling. The SaVHAc1-expressing plants maintained higher relative water content under salt stress through early stage closure of the leaf stoma and reduced stomata density. The increased K(+) /Na(+) ratio and other cations established an ion homoeostasis in SaVHAc1-expressing plants to protect the cytosol from toxic Na(+) and thereby maintained higher chlorophyll retention than the WT plants under salt stress. Besides, the role of SaVHAc1 in cell wall expansion and maintenance of net photosynthesis was implicated by comparatively higher root and leaf growth and yield of rice expressing SaVHAc1 over WT under salt stress. The study indicated that the genes contributing toward natural variation in grass halophytes could be effectively manipulated for improving salt tolerance of field crops within related taxa.


Assuntos
Oryza/fisiologia , Poaceae/enzimologia , Poaceae/genética , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/enzimologia , Estresse Fisiológico/genética , ATPases Vacuolares Próton-Translocadoras/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Padrões de Herança/efeitos dos fármacos , Padrões de Herança/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/anatomia & histologia , Brotos de Planta/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Poaceae/efeitos dos fármacos , Potássio/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/genética , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Análise de Sequência de DNA , Espectrofotometria Atômica , Estresse Fisiológico/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/metabolismo , Água
19.
J Invest Dermatol ; 132(2): 421-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22011905

RESUMO

There is increasing awareness of the role of mtDNA alterations in the development of cancer, as mtDNA point mutations are found at high frequency in a variety of human tumors. To determine the biological effects of mtDNA mutations in UV-induced skin tumors, hairless mice were irradiated to produce tumors, and the tumor mtDNAs were screened for single-nucleotide changes using temperature gradient capillary electrophoresis (TGCE), followed by direct sequencing. A mutation hot spot (9821insA) in the mitochondrially encoded tRNA arginine (mt-Tr) locus (tRNA(Arg)) was discovered in approximately one-third of premalignant and malignant skin tumors. To determine the functional relevance of this particular mutation in vitro, cybrid cell lines containing different mt-Tr (tRNA(Arg)) alleles were generated. The resulting cybrid cell lines contained the same nuclear genotype and differed only in their mtDNAs. The biochemical analysis of the cybrids revealed that the mutant haplotype is associated with diminished levels of complex I protein (CI), resulting in lower levels of baseline oxygen consumption and lower cellular adenosine triphosphate (ATP) production. We hypothesize that this specific mtDNA mutation alters cellular biochemistry, supporting the development of keratinocyte neoplasia.


Assuntos
DNA Mitocondrial/genética , Mutação , Neoplasias Induzidas por Radiação/genética , Neoplasias Cutâneas/genética , Trifosfato de Adenosina/biossíntese , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias Induzidas por Radiação/metabolismo , Consumo de Oxigênio , RNA de Transferência de Arginina/química , RNA de Transferência de Arginina/genética , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta
20.
Methods Mol Biol ; 699: 407-29, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21116995

RESUMO

Flow cytometry has been employed for the analysis of higher plants for approximately the last 30 years. For the angiosperms, ∼500,000 species, itself a daunting number, parametric measurements enabled through the use of flow cytometers started with basic descriptors of the individual cells and their contents, and have both inspired the development of novel cytometric methods that subsequently have been applied to organisms within other kingdoms of life, and adopted cytometric methods devised for other species, particularly mammals. Higher plants offer unique challenges in terms of flow cytometric analysis, notably the facts that their organs and tissues are complex three-dimensional assemblies of different cell types, and that their individual cells are, in general, larger than those of mammals.This chapter provides an overview of the general types of parametric measurement that have been applied to plants, and provides detailed methods for selected examples based on the plant model Arabidopsis thaliana. These illustrate the use of flow cytometry for the analysis of protoplasts and nuclear DNA contents (genome size and the cell cycle). These are further integrated with measurements focusing on specific cell types, based on transgenic expression of Fluorescent Proteins (FPs), and on analysis of the spectrum of transcripts found within protoplasts and nuclei. These measurements were chosen in particular to illustrate, respectively, the issues encountered in the flow analysis and sorting of large biological cells, typified by protoplasts; how to handle flow analyses under conditions that require processing of large numbers of samples in which the individual samples contain only a very small minority of objects of interest; and how to deal with exceptionally small amounts of RNA within the sorted samples.


Assuntos
Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo , Protoplastos/metabolismo , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Cloroplastos/genética , RNA de Cloroplastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA