Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ambio ; 41(4): 350-69, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22430307

RESUMO

Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO(2)) removal (CDR), which removes CO(2) from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research.


Assuntos
Dióxido de Carbono/química , Ecossistema , Luz Solar , Mudança Climática , Conservação dos Recursos Naturais/métodos , Meio Ambiente
2.
Proc Natl Acad Sci U S A ; 107(46): 19633-8, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20921413

RESUMO

Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.


Assuntos
Agricultura/tendências , Mudança Climática , Conservação de Recursos Energéticos/métodos , Conservação de Recursos Energéticos/tendências , Clima Tropical , Biocombustíveis/análise , Dióxido de Carbono/análise , Modelos Teóricos , Zea mays/economia
3.
Environ Sci Technol ; 39(23): 9023-32, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16382921

RESUMO

The U.S. National Assessment of the Potential Consequences of Climate Variability and Change was a federally coordinated nationwide effort that involved thousands of experts and stakeholders. To draw lessons from this effort, the 10 authors of this paper, half of whom were not involved in the Assessment, developed and administered an extensive survey, prepared a series of working papers, and conducted an invitational workshop in Washington, DC, on April 29, 2004. Considering all these sources, the authors conclude that the Assessment was largely successful in implementing its basic design of distributed stakeholder involvement and in achieving its basic objectives. Future assessments could be significantly improved if greater attention were devoted to developing a collective understanding of objectives, preparing guidance materials and providing training for assessment participants, developing a budgeting mechanism which would allow greater freedom in allocating resources across various assessment activities, and creating an environment in which assessments were part of an ongoing process.


Assuntos
Clima , Ecologia , Efeito Estufa , Estados Unidos
4.
Nature ; 429(6993): 699, 2004 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15201885
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA