Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2404283, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016994

RESUMO

Efficient sodium ion storage in graphite is as yet unattainable, because of the thermodynamic instability of sodium ion intercalates-graphite compounds. In this work, sodium fluorozirconate (Na3ZrF7, SFZ) functionalized graphite (SFZ-G) is designed and prepared by the in situ mechanochemical silicon (Si) replacement of sodium fluorosilicate (Na2SiF6, SFS) and functionalization of graphite at the same time. During the mechanochemical process, the atomic Si in SFS is directly replaced by atomic zirconium (Zr) from the zirconium oxide (ZrO2) balls and container in the presence of graphite, forming SFZ-G. The resulting SFZ-G, working as an anode material for sodium ion storage, shows a significantly enhanced capacity of 418.7 mAh g-1 at 0.1 C-rate, compared to pristine graphite (35 mAh g-1) and simply ball-milled graphite (BM-G, 200 mAh g-1). In addition, the SFZ-G exhibits stable sodium-ion storage performance with 86% of its initial capacity retention after 1000 cycles at 2.0 C-rate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA