Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 445: 138789, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394911

RESUMO

We describe a simple and sensitive liquid-crystal (LC)-based method for quantifying carbendazim (CBZ) by exploiting aptamer-specific recognition at the aqueous-LC interface. The method relies on the interfacial interaction between an aptamer and cetyltrimethylammonium bromide (CTAB); this interaction varies depending on the amount of CBZ. In the absence of CBZ, the aptamer disrupts the CTAB monolayer through electrostatic attraction, leading to a transition from homeotropic to tilted ordering of the LCs. As CBZ concentrations rise, the formation of aptamer-CBZ complexes increases, preserving the vertical alignment of the LCs by reducing collapse of the CTAB layer caused by electrostatic interactions. Using these methods, we achieved a CBZ detection limit of 3.12 pM (0.000597 µg/L) over a linear range of 0.05-5 nM. Moreover, we quantified CBZ levels in peach, soil, and tap water samples. Our LC-based detection method has significant research potential, offering sensitive, and straightforward detection of CBZ.


Assuntos
Aptâmeros de Nucleotídeos , Benzimidazóis , Técnicas Biossensoriais , Carbamatos , Cristais Líquidos , Cristais Líquidos/química , Cetrimônio , Técnicas Biossensoriais/métodos , Aptâmeros de Nucleotídeos/química , Água/química
2.
Colloids Surf B Biointerfaces ; 234: 113726, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157765

RESUMO

Glyphosate is a widely used herbicide that poses both health and environmental risks. In this study, we propose a liquid crystal (LC)-based assay for glyphosate detection that exploits the unique properties of LC materials. The nematic LC 4-cyano-4'-pentylbiphenyl (5CB) was employed as the sensing material and a self-assembled monolayer of octadecyltrichlorosilane (OTS) was used to modify glass substrates. The assay involved strong competition for coordination with Cu2+ for glyphosate, resulting in changes in the LC texture. By monitoring and analyzing the optical images of the LC film using polarizing microscopy, we detected and quantified the glyphosate concentrations. The proposed assay demonstrated high sensitivity and selectivity toward glyphosate in the detection range of 1-300 nM with a limit of detection of 0.26 nM. Moreover, the assay successfully applied to analyze glyphosate in spiked samples, including tap water, soil, and cabbage, and satisfactory recovery rates were achieved. Based on this detection principle, capillary tube test strips were developed for on-site applications. The detection thresholds of the test strips were controlled by varying the Cu2+ concentration. The developed LC-based assay is a rapid and reliable glyphosate detection method with potential applications in environmental monitoring and food safety.


Assuntos
Herbicidas , Cristais Líquidos , Glifosato , Cristais Líquidos/química , Ligação Competitiva , Água/química
3.
Mikrochim Acta ; 191(1): 55, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153588

RESUMO

Tumor necrosis factor-alpha (TNF-α) is a cytokine secreted by the macrophages and Th1 cells of the immune system in response to inflammation. Given its significance as a biomarker with elevated levels in physiological fluids in various conditions, there is an increasing demand for a simple and accurate TNF-α detection strategy. In this article, we present a liquid crystal (LC)-based biosensor developed for sensitive TNF-α detection. The biosensor operates as follows: TNF-α and detection antibodies (DAbs) form complexes during preincubation. These complexes then bind with the surface-immobilized capture antibodies (CAbs), facilitating the antigen-antibody reaction between the CAbs and the TNF-α/DAb complexes. This target recognition interaction alters the surface topography, disrupting the vertical orientation of LCs produced by dimethyloctadecyl[3-(trimethoxysilyl)-propyl]ammonium chloride. The orientational change in the LCs can be easily visualized with a polarized optical microscope, resulting in brighter images as TNF-α levels rise. Our results demonstrated a linear range of 5.00-500 pg/mL, with a limit of detection and limit of quantification being 1.08 and 3.56 pg/mL, respectively. Recovery experiments on diluted saliva samples produced reasonable results, with TNF-α recoveries ranging from 97.1% ± 2.58% to 107% ± 5.95%.


Assuntos
Técnicas Biossensoriais , Fator de Necrose Tumoral alfa , Anticorpos , Anticorpos Imobilizados , Citocinas , Cristais Líquidos , Fator de Necrose Tumoral alfa/análise , Humanos
4.
Anal Bioanal Chem ; 415(25): 6323-6332, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37581706

RESUMO

A liquid crystal (LC)-based aptasensor was developed that can detect 17ß-estradiol (E2) at the picomolar level. This aptasensor is based on competitive reactions of the aptamer that interacts with cetyl trimethyl ammonium bromide (CTAB) and E2 at the aqueous/LC interface. The long alkyl chain of CTAB anchored the 4-cyano-4'-pentylbiphenyl (5CB) to a homeotropic state and controls the local anchoring depending on the extent of electrostatic interaction with the aptamer. Upon addition of the aptamer solution to the CTAB-saturated LC layer, LCs change from dark to bright optical response. This is due to the perturbed orientation of 5CB at the aqueous/LC interface as a result of electrostatic attraction of the cationic group of CTAB and the phosphate group of the aptamer. The conformational change of the aptamer due to specific binding with E2 weakens the electrostatic attraction between CTAB and aptamer. When specific binding becomes relatively dominant, CTAB induces the orientation of LCs to the homeotropic state, resulting in a dark optical image observed. We also analyzed the change in the optical response of LCs according to the interfacial events and compared the grayscale values of the optical image for each concentration of E2 to determine the detection limit. Accordingly, the detection limit of the E2 sensor was found to be 3.1 pM (0.8 pg/ml) in Tris-buffered saline (TBS), and 6.8 pM (1.9 pg/ml) in human urine. The LC-based optical aptasensor was thus shown to be highly sensitive and selective with no requirement for complex analysis equipment.

5.
Biotechnol Appl Biochem ; 70(6): 1972-1982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37479671

RESUMO

We report here a liquid crystal (LC)-based sensor for detecting serotonin (5-HT); the proposed sensor uses target-specific aptamer recognition at a cationic surfactant decorated-aqueous/LC interface. Our detection strategy focuses on the orientational transition of LCs upon biological interactions at the interface. In this sensing system, the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) forms a self-assembled monolayer at the aqueous/LC interface and triggers the homeotropic orientation of LCs. After introducing the 5-HT specific aptamer, an electrostatic attraction occurs between the cationic CTAB and anionic aptamer. This interaction destructs the surfactant monolayer at the interface, inducing reorganization of LC alignment from homeotropic to tilted conditions. In the increasing 5-HT levels, specific binding between 5-HT and the aptamer diminishes the interaction between the aptamer and CTAB, thereby maintaining the homeotropic alignment of LCs. The orientational transition of the LCs was observed under a polarized optical microscope. The developed biosensor has a linear detection range from 1 to 1000 nM and a detection limit of 1.68 nM. Moreover, the sensor was applied to a human urine sample and a detection limit of 2.25 nM was obtained. Overall, the designed LC-based sensor is a sensitive, simple, cost effective, and selective platform for detecting 5-HT in aqueous solutions.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Humanos , Serotonina , Cristais Líquidos/química , Cetrimônio , Tensoativos/química , Oligonucleotídeos , Água/química
6.
Anal Chim Acta ; 1270: 341459, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37311612

RESUMO

In this study, a liquid crystal (LC)-based assay for the real-time detection of tetracycline (Tc) was developed. The sensor was constructed by implementing an LC-based platform that utilized the chelating properties of Tc to target Tc metal ions. This design enabled Tc-dependent induction of changes in the optical image of the LC; these modifications could then be observed in real-time with the naked eye. The performance of the sensor in detecting Tc was investigated with various metal ions to identify the most effective metal ion for Tc detection. In addition, the selectivity of the sensor was evaluated using different antibiotics. A correlation between Tc concentration and the optical intensity of the LC optical images was established, which enabled the quantification of Tc concentrations. The proposed method can detect Tc concentrations with a detection limit as low as 2.67 pM. Tests were conducted on milk, honey, and serum samples, which demonstrated that the proposed assay is highly accurate and reliable. The high sensitivity and selectivity of the proposed method make it a promising tool for real-time Tc detection, with potential applications in fields ranging from biomedical research to agriculture.


Assuntos
Compostos Heterocíclicos , Cristais Líquidos , Tetraciclina , Antibacterianos , Agricultura , Bioensaio
7.
Mikrochim Acta ; 190(4): 122, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36890280

RESUMO

A liquid crystal-based assay (LC) was developed to monitor paraoxon by incorporating a Cu2+ -coated substrate and the inhibitory effect of paraoxon with acetylcholinesterase (AChE). We observed that thiocholine (TCh), a hydrolysate of AChE and acetylthiocholine (ATCh), interfered with the alignment of 5CB films through a reaction between Cu2+ ions and the thiol moiety of TCh. The catalytic activity of AChE was inhibited in the presence of paraoxon due to the irreversible interaction between TCh and paraoxon; consequently, no TCh molecule was available to interact with Cu2+ on the surface. This resulted in a homeotropic alignment of the liquid crystal. The proposed sensor platform sensitively quantified paraoxon with a detection limit of 2.20 ± 0.11 (n = 3) nM within a range of 6 to 500 nM. The specificity and reliability of the assay were verified by measuring paraoxon in the presence of various suspected interfering substances and spiked samples. As a result, the sensor based on LC can potentially be used as a screening tool for accurate evaluation of paraoxon and other organophosphorus compounds.


Assuntos
Cristais Líquidos , Praguicidas , Paraoxon , Praguicidas/análise , Acetilcolinesterase/química , Inibidores da Colinesterase , Reprodutibilidade dos Testes
8.
Mikrochim Acta ; 189(8): 292, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35879491

RESUMO

A liquid crystal (LC)-based assay was developed to detect chlorothalonil (CHL). The detection principle is based on (i) the electrostatic interaction between the positively charged protein protamine (PRO) with the negatively charged phospholipid dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG) and (ii) the CHL-mediated inhibition of papain (PAP) activity. The aqueous/LC interface was decorated with a monolayer of DOPG and PRO that self-assembled via electrostatic interactions. PAP can hydrolyze PRO, resulting in the realignment of an LC by DOPG, inducing a shift in the LC response from bright to dark. The addition of CHL can inhibit the activity of PAP, leading to the attraction of PRO to DOPG and the consequent disruption of the LC orientation. The orientation change of the LC in the presence or absence of CHL can be observed from the changes in its optical appearance using a polarized light microscope. Under optimal conditions, the developed assay achieved a detection limit of 0.196 pg mL-1 within a range of determination of 0.65-200 pg mL-1. The selectivity of the assay was verified in the presence of carbendazim and imidacloprid. The practical application of the proposed assay was demonstrated by its use to determine the levels of CHL in food extracts and environmental samples, which yielded recoveries and relative standard deviations (RSD) in the ranges of 87.39-99.663% and 1.03-6.32%, respectively.


Assuntos
Cristais Líquidos , Cristais Líquidos/química , Nitrilas/química , Papaína , Proteínas
9.
Micromachines (Basel) ; 13(3)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35334782

RESUMO

In this study, we developed a liquid crystal (LC) droplet-based sensing platform for the detection of carboxylesterase (CES) and its inhibitors. The LC droplet patterns in contact with myristoylcholine chloride (Myr) exhibited dark cross appearances, corresponding to homeotropic anchoring of the LCs at the aqueous/LC interface. However, in the presence of CES, Myr was hydrolyzed; therefore, the optical images of the LC patterns changed to bright fan-shaped textures, corresponding to a planar orientation of LCs at the interface. In contrast, the presence of CES inhibitors, such as benzil, inhibits the hydrolysis of Myr; as a result, the LC patterns exhibit dark cross textures. This principle led to the development of an LC droplet-based sensing method with a detection limit of 2.8 U/L and 10 µM, for CES detection and its inhibitor, respectively. The developed biosensor not only enables simple and label-free detection of CES but also shows high promise for the detection of CES inhibitors.

10.
Anal Biochem ; 645: 114634, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35271807

RESUMO

An ultrasensitive colorimetric aptasensor for the detection of amoxicillin (AMO) based on the Tris-HCl buffer-induced aggregation of gold nanoparticles (AuNPs) was developed. The AuNPs were aggregated by the addition of Tris-HCl buffer. The adsorption of the aptamer on the AuNP surface increased its negative charge density, leading to the enhancement of the electrostatic repulsion between the nanoparticles, thus protecting AuNPs from aggregation in the Tris-HCl buffer. However, the specific binding of the aptamer with AMO induced conformational changes in the aptamer, which reduced the adsorption of the aptamer on the AuNP surface, diminishing the protective effect of the aptamer. This resulted in the aggregation of AuNPs by Tris-HCl buffer, and consequently, color change of the solution containing AuNPs from red to blue. Under optimized conditions, a linear relationship between the absorbance ratio variation (ΔA680/A520) and the AMO concentration was observed in the concentration range of 0.1-125 nM, with a detection limit of 67 pM. The developed biosensor exhibited high selectivity toward AMO. Moreover, this strategy was successfully applied to the detection of AMO in lake water samples. Thus, the present aptasensor is a promising alternative for the simple and ultrasensitive detection of AMO in the environment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Amoxicilina , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Colorimetria/métodos , Ouro/química , Nanopartículas Metálicas/química
11.
Micromachines (Basel) ; 12(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34945376

RESUMO

Here, we designed a simple, rapid, and ultrasensitive colorimetric aptasensor for detecting anatoxin-a (ATX-a). The sensor employs a DNA aptamer as the sensing element and gold nanoparticles (AuNPs) as probes. Adsorption of the aptamer onto the AuNP surface can protect AuNPs from aggregation in NaCl solution, thus maintaining their dispersion state. In the presence of ATX-a, the specific binding of the aptamer with ATX-a results in a conformational change in the aptamer, which facilitates AuNP aggregation and, consequently, a color change of AuNPs from red to blue in NaCl solution. This color variation is directly associated with ATX-a concentration and can be easily measured using a UV/Vis spectrophotometer. The absorbance variation is linearly proportional to ATX-a concentration across the concentration range of 10 pM to 200 nM, with a detection limit of 4.45 pM and high selectivity against other interferents. This strategy was successfully applied to the detection of ATX-a in lake water samples. Thus, the present aptasensor is a promising alternative method for the rapid detection of ATX-a in the environment.

12.
Micromachines (Basel) ; 12(4)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808299

RESUMO

We developed a liquid crystal (LC) aptamer biosensor for the sensitive detection of amoxicillin (AMX). The AMX aptamer was immobilized onto the surface of a glass slide modified with a mixed self-assembled layer of dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) and (3-aminopropyl) triethoxysilane (APTES). The long alkyl chains of DMOAP maintained the LC molecules in a homeotropic orientation and induced a dark optical appearance under a polarized light microscope (POM). In the presence of AMX, the specific binding of the aptamer and AMX molecules induced a conformational change in the aptamers, leading to the disruption of the homeotropic orientation of LCs, resulting in a bright optical appearance. The developed aptasensor showed high specificity and a low detection limit of 3.5 nM. Moreover, the potential application of the developed aptasensor for the detection of AMX in environmental samples was also demonstrated. Therefore, the proposed aptasensor is a promising platform for simple, rapid, and label-free monitoring of AMX in an actual water environment with high selectivity and sensitivity.

13.
Biosensors (Basel) ; 11(3)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806721

RESUMO

We report a liquid crystal (LC)-based aptasensor for the detection of malathion using a cationic surfactant-decorated LC interface. In this method, LCs displayed dark optical images when in contact with aqueous cetyltrimethylammonium bromide (CTAB) solution due to the formation of a self-assembled CTAB monolayer at the aqueous/LC interface, which induced the homeotropic orientation of LCs. With the addition of malathion aptamer, the homeotropic orientation of LCs changed to a planar one due to the interactions between CTAB and the aptamer, resulting in a bright optical image. In the presence of malathion, the formation of aptamer-malathion complexes caused a conformational change of the aptamers, thereby weakening the interactions between CTAB and the aptamers. Therefore, CTAB is free to induce a homeotropic ordering of the LCs, which corresponds to a dark optical image. The developed sensor exhibited high specificity for malathion determination and a low detection limit of 0.465 nM was achieved. Moreover, the proposed biosensor was successfully applied to detect malathion in tap water, river water, and apple samples. The proposed LC-based aptasensor is a simple, rapid, and convenient platform for label-free monitoring of malathion in environmental samples.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Praguicidas/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Limite de Detecção , Cristais Líquidos/química , Malation , Tensoativos/química , Água/química
14.
Colloids Surf B Biointerfaces ; 200: 111587, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33529929

RESUMO

Here, we demonstrate a capillary-sensing platform based on liquid crystals (LCs) confined in microcapillaries for simple and sensitive detection of acetylcholinesterase (AChE) and its inhibitors. LC droplets were formed through sequential injection of LCs and an aqueous solution into trichloro(octyl)silane (OTS)-treated microcapillaries. When the confined LC droplets make contact with a cationic surfactant solution, myristoylcholine chloride (Myr), the formation of a Myr monolayer at the aqueous/LC interface induces a horizontal orientation of the LCs at the interface along the microcapillary, producing an optical LC droplet texture of a four-petal shape. On the other hand, AChE can catalyze the hydrolysis of Myr into choline and myristic acid. The hydrolyzed Myr is unable to form a monolayer at the aqueous/LC interface, and therefore the confined LC droplets exhibit two bright-lined optical images when in contact with the pre-incubated mixture of Myr and AChE, corresponding to the homeotropic orientation of LCs at the interface. However, in the presence of AChE-inhibiting pesticides, such as fenobucarb and malathion, the activity of AChE is inhibited, and thus, the enzymatic hydrolysis of Myr cannot occur. As a result, the confined LC droplets present the four petal-shaped optical images when in contact with the pre-incubated mixture of Myr, AChE, and pesticides. Based on this principle, an LC-based microcapillary sensor was developed and utilized for the detection of pesticides. Using this sensing platform, fenobucarb and malathion were detected at limits of 5 pg/mL and 2.5 pg/mL, respectively. Moreover, the proposed biosensor was successfully applied to the determination of pesticides in real river water. Therefore, this LC-based microcapillary sensor is a promising platform for simple, rapid, and label-free detection of pesticides with very high sensitivity.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Praguicidas , Acetilcolinesterase , Praguicidas/análise , Tensoativos
15.
Chemosphere ; 265: 129052, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246703

RESUMO

The urea oxidation reaction (UOR) and nitrophenol reduction are safe and key limiting reactions for sustainable energy conversion and storage. Urea and nitrophenol are abundant in industrial and agricultural wastes, human wastewater, and in the environment. Catalytic oxidative and reductive removal is the most effective process to remove urea and 4-nitrophenol from the environment, necessary to protect human health. 2D carbon-supported, cobalt nanoparticle-based materials are emerging catalysts for nitrophenol reduction and as an anode material for the UOR. In this work, cobalt modified on a porous organic polymer (CoPOP) was synthesized and carbonized at 400 and 600 °C. The formation of CoPOP was confirmed by FT-IR spectroscopy, the 2D graphitic layer and amorphous carbon with cobalt metal by TEM, SEM, and PXRD, and the elemental composition by TEM mapping, EDX, and XPS. The catalytic activity for the 4-nitrophenol reduction was studied and the related electrocatalytic UOR was scientifically evaluated. The catalytic activity toward the reduction of 4-NP to 4-AP was tested with the addition of NaBH4; CoPOP-3 exhibited enhanced activity at a rate of 0.069 min-1. Furthermore, LSV investigated the catalytic activity of materials toward UOR, producing hydrogen gas, the products of which were analyzed via gas chromatography. Among the electrocatalysts studied, CoPOP-2 exhibited a lower onset potential, and the Tafel slope was 1.34 V and 80 mV dec-1. This study demonstrates that cobalt metal-doped porous organic polymers can be used as efficient catalysts to remove urea and nitrophenol from wastewater.


Assuntos
Cobalto , Polímeros , Humanos , Nitrofenóis , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Ureia
16.
Anal Biochem ; 605: 113807, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526198

RESUMO

We present a label-free liquid crystal-based biosensor for the detection of dopamine (DA) in aqueous solutions using dopamine-binding aptamers (DBA) as recognition elements. In this system, the dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) self-assembled monolayers immobilized on glass slides support the long alkyl chains that keep the liquid crystal (LC) molecules in a homeotropic orientation. Glutaraldehyde (GA) is used as a cross-linker to immobilize DBA onto the surface of glass slides. The specific binding of DA and DBA disrupts the homeotropic orientation of LCs, thereby inducing a change in the orientation from homeotropic to a random alignment. This orientation change can be converted and visualized simply as a transition from a dark optical LC image to a brighter image under a polarized optical microscope (POM), enabling the detection of DA. The developed LC-based aptasensor shows a good linear optical response towards DA in the very wide range of 1 pM-10 µM (0.19 pg/mL to 1.9 µg/mL) and has a very low detection limit of 10 pM (∼1.9 pg/mL). The biosensor also exhibited satisfactory selectivity and could be successfully applied to detect DA in human urine. The proposed LC-based aptamer sensing method offers a simple, rapid, highly sensitive and selective, and a label-free method for the analysis of DA in real clinical samples.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais , Dopamina/urina , Cristais Líquidos/química , Microscopia de Polarização , Glutaral/química , Humanos
17.
Anal Biochem ; 593: 113589, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978456

RESUMO

In this paper, we report the development of a rapid and simple, liquid crystal (LC)-based aptasensor that enables the detection of malathion (MA) using the orientation properties of liquid crystals. This sensor is composed of aptamers immobilized on a surface decorated with a self-assembled monolayer of (3-glycidyloxypropyl)trimethoxysilane (GOPS) and dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP). When MA interacts with the immobilized aptamers, an orientational change in the LCs, from homeotropic to random, is induced. This orientational change generates visible optical responses observed as shifts from dark to bright images under a polarized optical microscope (POM). This sensing system has a linear detection range from 0.8 to 50 pM, with a correlation coefficient of 0.9922, and a limit of detection (LOD) of 2.5 pM (≈0.826 pg/mL). Our proposed aptasensor has good specificity and sensitivity to MA in tap water and soil. Moreover, this sensor suggests a promising strategy for simple, rapid testing for various insecticide residues.


Assuntos
Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos , Inseticidas/análise , Malation/análise , Solo/química , Água/química , Aptâmeros de Nucleotídeos/química , Cristais Líquidos/química , Resíduos de Praguicidas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
18.
Chempluschem ; 84(10): 1554-1559, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31943938

RESUMO

A sensing method based on the pattern of liquid crystal droplets was developed for detecting and monitoring low levels of organic aldehyde vapors. Exposure of the LC droplet pattern covered with glycine solution to aldehyde vapors induced an optical signal transition from a bright fan shape to a dark cross appearance, as observed by polarized light microscopy. Aldehyde and glycine react at the air/solution interface to form a Schiff-base compound, which controls the orientation of the LCs and induces a change in the optical signals of the LC droplet pattern. The results show that the glycine/LC droplet pattern system is particularly sensitive and selective to aldehydes. In the actual environment, the sensor is exposed to the aldehyde and the signal transition is completed within a few minutes (2-7 min). The LC-based method has the advantages of simple construction, easy operation, convenient data reading, and shows excellent prospects for real-time detection of aldehyde vapors.

19.
Anal Biochem ; 560: 19-23, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30172745

RESUMO

In this study, a simple, rapid, and label-free sensor was developed for detecting the enzymatic activity of catalase (CAT) with liquid crystals (LCs) confined in microcapillaries. Inside a microcapillary functionalized with n-octyltrichlorosilane, aldehyde-doped LCs anchored radially so that a pattern of straight lines was observed under a polarized optical microscope (POM). However, once hydrogen peroxide (HP) oxidized the aldehyde into carboxylic acid, which has surface activity, the orientation of the LCs at the interface changed, resulting in a distinct pattern change, from straight to crossed. In this system, the enzymatic activity of CAT could be detected as it inhibits the oxidation by decomposing HP; as a result, the pattern changed back to the straight one. From the orientational and optical shift, the enzymatic activity of CAT was detected up to a concentration of 0.8 fM under mild experimental conditions and 8 aM at pH 9.0. This result suggests the need for further study of microcapillary systems to develop simple and sensitive sensors for biochemical interactions.


Assuntos
Técnicas Biossensoriais/métodos , Catalase/análise , Cristais Líquidos/química , Microscopia de Polarização/métodos , Aldeídos/química , Aldeídos/metabolismo , Tubo Capilar , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Ácidos Láuricos/química , Ácidos Láuricos/metabolismo , Muramidase/química , Tripsina/química , Urease/química
20.
Anal Biochem ; 556: 1-6, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29920235

RESUMO

DNA single-strand breaks (SSBs) have attracted much interest since they are highly related to carcinogenesis and ageing. Herein, we report a new liquid crystal (LC)-based sensor for the detection of DNA SSBs generated by reactive oxygen species (ROS) created from the Fenton reaction. The adsorption of single-stranded DNA (ssDNA) onto the cationic surfactant-laden aqueous/LC interface interferes with the surfactant layer, inducing a planar orientation of the LCs. However, the DNA SSBs generated by the Fenton reaction-produced ROS result in a decrease of the electrostatic interactions between the ssDNA and cationic surfactant molecules, causing rearrangement of the surfactant layer and reorientation of the LCs back to a homeotropic alignment. The changes in orientation of the LCs caused by the DNA SSBs are simply converted and observed as a shift from a bright optical image of the LCs to a dark one under a polarized light microscope. With this simple LC-based approach, the DNA SSBs could be detected more effectively and rapidly without any complex instrumentation or intricate processes. Therefore, our research provides a novel strategy for the detection of DNA damage as well as better insight into the DNA-damaging process.


Assuntos
Técnicas Biossensoriais , Quebras de DNA de Cadeia Simples , DNA de Cadeia Simples/química , Cristais Líquidos/química , Espécies Reativas de Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA