Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(29): 37555-37568, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39007297

RESUMO

The chemokine (C-X-C) motif ligand 9 (CXCL9) is one of the lymphocyte-traffic-involved chemokines. Despite the immunotherapeutic potential of CXCL9 for recruiting effector T cells (cluster of differentiation 4+ (CD4+) and CD8+ T cells) and natural killer cells (NK cells) around the tumors, practical applications of CXCL9 have been limited because of its immune toxicity and lack of stability in vivo. To overcome these limitations, we designed and synthesized Pt-Te nanorods (PtTeNRs), which exhibited excellent photothermal conversion efficiency with stable CXCL9 payload characteristics under the physiological conditions of in vivo environments. We developed a CXCL9-based immunotherapy strategy by utilizing the unique physicochemical properties of developed PtTeNRs. The investigation revealed that the PtTeNR-loaded CXCL9 was effectively accumulated in the tumor, subsequently released in a sustained manner, and successfully recruited effector T cells for immunotherapy of the designated tumor tissue. In addition, a synergistic effect was observed between the photothermal (PT) therapy and antiprogrammed cell death protein 1 (aPD-1) antibody. In this study, we demonstrated that PtTeNR-based CXCL9, PT, and aPD-1 antibody trimodal therapy delivers an outstanding tumor suppression effect in all stages of cancer, including phases 1-4 and tumor recurrence.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Imunoterapia , Nanotubos , Animais , Camundongos , Imunidade Inata/efeitos dos fármacos , Nanotubos/química , Imunidade Adaptativa/efeitos dos fármacos , Humanos , Terapia Fototérmica , Quimiocina CXCL9/química , Platina/química , Platina/farmacologia , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/imunologia , Camundongos Endogâmicos BALB C , Feminino
2.
J Biophotonics ; 17(8): e202400078, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38934081

RESUMO

Optical-resolution photoacoustic microscopy (OR-PAM) has been increasingly utilized for in vivo imaging of biological tissues, offering structural, functional, and molecular information. In OR-PAM, it is often necessary to make a trade-off between imaging depth, lateral resolution, field of view, and imaging speed. To improve the lateral resolution without sacrificing other performance metrics, we developed a virtual-point-based deconvolution algorithm for OR-PAM (VP-PAM). VP-PAM has achieved a resolution improvement ranging from 43% to 62.5% on a single-line target. In addition, it has outperformed Richardson-Lucy deconvolution with 15 iterations in both structural similarity index and peak signal-to-noise ratio on an OR-PAM image of mouse brain vasculature. When applied to an in vivo glass frog image obtained by a deep-penetrating OR-PAM system with compromised lateral resolution, VP-PAM yielded enhanced resolution and contrast with better-resolved microvessels.


Assuntos
Processamento de Imagem Assistida por Computador , Microscopia , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Animais , Microscopia/métodos , Camundongos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Fenômenos Ópticos , Algoritmos , Razão Sinal-Ruído , Microvasos/diagnóstico por imagem
3.
Nat Commun ; 15(1): 1599, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383552

RESUMO

Lipids play crucial roles in many biological processes. Mapping spatial distributions and examining the metabolic dynamics of different lipid subtypes in cells and tissues are critical to better understanding their roles in aging and diseases. Commonly used imaging methods (such as mass spectrometry-based, fluorescence labeling, conventional optical imaging) can disrupt the native environment of cells/tissues, have limited spatial or spectral resolution, or cannot distinguish different lipid subtypes. Here we present a hyperspectral imaging platform that integrates a Penalized Reference Matching algorithm with Stimulated Raman Scattering (PRM-SRS) microscopy. Using this platform, we visualize and identify high density lipoprotein particles in human kidney, a high cholesterol to phosphatidylethanolamine ratio inside granule cells of mouse hippocampus, and subcellular distributions of sphingosine and cardiolipin in human brain. Our PRM-SRS displays unique advantages of enhanced chemical specificity, subcellular resolution, and fast data processing in distinguishing lipid subtypes in different organs and species.


Assuntos
Microscopia , Microscopia Óptica não Linear , Animais , Camundongos , Humanos , Microscopia Óptica não Linear/métodos , Análise Espectral Raman/métodos , Lipídeos
4.
Curr Protoc ; 4(1): e970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38270527

RESUMO

Raman microscopy is a vibrational imaging technology that can detect molecular chemical bond vibrational signals. Since this signal is originated from almost every vibrational mode of molecules with different vibrational energy levels, it provides spatiotemporal distribution of various molecules in living organisms without the need for any labeling. The limitations of low signal strength in Raman microscopy have been effectively addressed by incorporating a stimulated emission process, leading to the development of stimulated Raman scattering (SRS) microscopy. Furthermore, the issue of low spatial resolution has been resolved through the application of computational techniques, specifically image deconvolution. In this article, we present a comprehensive guide to super-resolution SRS microscopy using an Adam-based pointillism deconvolution (A-PoD) algorithm, complemented by a user-friendly graphical user interface (GUI). We delve into the crucial parameters and conditions necessary for achieving super-resolved images through SRS imaging. Additionally, we provide a step-by-step walkthrough of the preprocessing steps and the use of GUI-supported A-PoD. This complete package offers a user-friendly platform for super-resolution SRS microscopy, enhancing the versatility and applicability of this advanced microscopy technique to reveal nanoscopic multimolecular nature. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Super-resolution stimulated Raman scattering microscopy with graphical user interface-supported A-PoD Support Protocol: Deuterium labeling on cells with heavy water for metabolic imaging.


Assuntos
Microscopia , Microscopia Óptica não Linear , Algoritmos , Óxido de Deutério , Rotulagem de Produtos
5.
Biomed Opt Express ; 14(11): 5764-5780, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38021123

RESUMO

Triple negative breast cancer (TNBC) is a highly aggressive form of cancer. Detecting TNBC early is crucial for improving disease prognosis and optimizing treatment. Unfortunately, conventional imaging techniques fall short in providing a comprehensive differentiation of TNBC subtypes due to their limited sensitivity and inability to capture subcellular details. In this study, we present a multimodal imaging platform that integrates heavy water (D2O)-probed stimulated Raman scattering (DO-SRS), two-photon fluorescence (TPF), and second harmonic generation (SHG) imaging. This platform allows us to directly visualize and quantify the metabolic activities of TNBC subtypes at a subcellular level. By utilizing DO-SRS imaging, we were able to identify distinct levels of de novo lipogenesis, protein synthesis, cytochrome c metabolic heterogeneity, and lipid unsaturation rates in various TNBC subtype tissues. Simultaneously, TPF imaging provided spatial distribution mapping of NAD[P]H and flavin signals in TNBC tissues, revealing a high redox ratio and significant lipid turnover rate in TNBC BL2 (HCC1806) samples. Furthermore, SHG imaging enabled us to observe diverse orientations of collagen fibers in TNBC tissues, with higher anisotropy at the tissue boundary compared to the center. Our multimodal imaging platform offers a highly sensitive and subcellular approach to characterizing not only TNBC, but also other tissue subtypes and cancers.

6.
Acc Mater Res ; 4(9): 726-728, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37766942
7.
Nanoscale Adv ; 5(19): 5165-5213, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37767032

RESUMO

In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.

8.
Sensors (Basel) ; 23(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37688013

RESUMO

Drones are currently being used for various applications. However, the detection of drones for defense or security purposes has become problematic because of the use of plastic materials and the small size of these drones. Any drone can be placed under surveillance to accurately determine its position by collecting high-resolution data using various detectors such as the radar system proposed in this paper. The W-band radar has a high carrier frequency, which makes it easy to design a wide bandwidth system, and the wideband FMCW signal is suitable for creating high resolution images from a distance. Unfortunately, the huge amounts of data gathered in this way also contain clutter (such as background data and noise) that is usually generated from unstable radar systems and complex environmental factors, and which frequently gives rise to distorted data. Accurate extraction of the position of the target from this big data requires the clutter to be suppressed and canceled, but conventional clutter cancellation methods are not suitable. Four clutter cancellation algorithms are assessed and compared: standard deviation, adaptive least mean squares (LMS), recursive least squares (RLS), and the proposed LMS. The proposed LMS has combined LMS with the standard deviation method. First, the big data pertaining to the target position is collected using the W-band radar system. Subsequently, the target position is calculated by applying these algorithms. The performance of the proposed algorithms is measured and compared to that of the other three algorithms by conducting outdoor experiments.

9.
Nanomaterials (Basel) ; 13(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299609

RESUMO

Owing to multiple physicochemical properties, the combination of hybrid elemental compositions of nanoparticles can be widely utilized for a variety of applications. To combine pristine tellurium nanorods, which act as a sacrificing template, with another element, iridium-tellurium nanorods (IrTeNRs) were synthesized via the galvanic replacement technique. Owing to the coexistence of iridium and tellurium, IrTeNRs exhibited unique properties, such as peroxidase-like activity and photoconversion. Additionally, the IrTeNRs demonstrated exceptional colloidal stability in complete media. Based on these properties, the IrTeNRs were applied to in vitro and in vivo cancer therapy, allowing for the possibility of multiple therapeutic methodologies. The enzymatic therapy was enabled by the peroxidase-like activity that generated reactive oxygen species, and the photoconversion under 473, 660 and 808 nm laser irradiation induced cancer cell apoptosis via photothermal and photodynamic therapy.

10.
GEN Biotechnol ; 2(3): 247-261, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37363411

RESUMO

Studies have shown that brain lipid metabolism is associated with biological aging and influenced by dietary and genetic manipulations; however, the underlying mechanisms are elusive. High-resolution imaging techniques propose a novel and potent approach to understanding lipid metabolic dynamics in situ. Applying deuterium water (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy, we revealed that lipid metabolic activity in Drosophila brain decreased with aging in a sex-dependent manner. Female flies showed an earlier occurrence of lipid turnover decrease than males. Dietary restriction (DR) and downregulation of insulin/IGF-1 signaling (IIS) pathway, two scenarios for lifespan extension, led to significant enhancements of brain lipid turnover in old flies. Combining SRS imaging with deuterated bioorthogonal probes (deuterated glucose and deuterated acetate), we discovered that, under DR treatment and downregulation of IIS pathway, brain metabolism shifted to use acetate as a major carbon source for lipid synthesis. For the first time, our study directly visualizes and quantifies spatiotemporal alterations of lipid turnover in Drosophila brain at the single organelle (lipid droplet) level. Our study not only demonstrates a new approach for studying brain lipid metabolic activity in situ but also illuminates the interconnection of aging, dietary, and genetic manipulations on brain lipid metabolic regulation.

11.
J Mater Chem B ; 11(23): 5142-5150, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37248783

RESUMO

Silver nanoparticles (AgNPs) continue to be applied to agricultural and medical applications because of their antibacterial and antifungal effects. However, AgNPs are vulnerable to poisoning by oxidation or sulfidation, and unintentional toxicity can occur via leaching. Therefore, ensuring the stability of AgNPs for practical applications is considered an important requirement. In this study, we propose the solvothermal galvanic replacement of a Te nanorod (TeNR) template with a Ag precursor to manufacture highly stable and biocompatible Ag-Te nanoparticles (AgTeNPs). In addition to their high stability, AgTeNPs composed of Ag2Te-Ag4.53Te3 were evaluated as a nanotherapeutic agent enabled by their selective toxicity through metabolic degradation in breast cancer cells. It has been demonstrated that combinatorial treatment with hyperthermic cancer-cell ablation through photothermal conversion provides an effective cancer treatment in vitro and in vivo. The discovered new biocompatible Ag nanomaterials with innate anticancer effects are expected to be applied to various application fields.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Neoplasias de Mama Triplo Negativas , Humanos , Prata/farmacologia , Oxirredução
12.
J Vis Exp ; (195)2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37246865

RESUMO

Essential aromatic amino acids (AAAs) are building blocks for synthesizing new biomasses in cells and sustaining normal biological functions. For example, an abundant supply of AAAs is important for cancer cells to maintain their rapid growth and division. With this, there is a rising demand for a highly specific, noninvasive imaging approach with minimal sample preparation to directly visualize how cells harness AAAs for their metabolism in situ. Here, we develop an optical imaging platform that combines deuterium oxide (D2O) probing with stimulated Raman scattering (DO-SRS) and integrates DO-SRS with two-photon excitation fluorescence (2PEF) into a single microscope to directly visualize the metabolic activities of HeLa cells under AAA regulation. Collectively, the DO-SRS platform provides high spatial resolution and specificity of newly synthesized proteins and lipids in single HeLa cell units. In addition, the 2PEF modality can detect autofluorescence signals of nicotinamide adenine dinucleotide (NADH) and Flavin in a label-free manner. The imaging system described here is compatible with both in vitro and in vivo models, which is flexible for various experiments. The general workflow of this protocol includes cell culture, culture media preparation, cell synchronization, cell fixation, and sample imaging with DO-SRS and 2PEF modalities.


Assuntos
Aminoácidos Aromáticos , Microscopia , Humanos , Células HeLa , Microscopia/métodos , Proteínas/metabolismo , Aminoácidos/metabolismo
13.
Nat Methods ; 20(3): 448-458, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797410

RESUMO

Stimulated Raman scattering (SRS) offers the ability to image metabolic dynamics with high signal-to-noise ratio. However, its spatial resolution is limited by the numerical aperture of the imaging objective and the scattering cross-section of molecules. To achieve super-resolved SRS imaging, we developed a deconvolution algorithm, adaptive moment estimation (Adam) optimization-based pointillism deconvolution (A-PoD) and demonstrated a spatial resolution of lower than 59 nm on the membrane of a single lipid droplet (LD). We applied A-PoD to spatially correlated multiphoton fluorescence imaging and deuterium oxide (D2O)-probed SRS (DO-SRS) imaging from diverse samples to compare nanoscopic distributions of proteins and lipids in cells and subcellular organelles. We successfully differentiated newly synthesized lipids in LDs using A-PoD-coupled DO-SRS. The A-PoD-enhanced DO-SRS imaging method was also applied to reveal metabolic changes in brain samples from Drosophila on different diets. This new approach allows us to quantitatively measure the nanoscopic colocalization of biomolecules and metabolic dynamics in organelles.


Assuntos
Microscopia , Análise Espectral Raman , Microscopia/métodos , Análise Espectral Raman/métodos , Proteínas/metabolismo , Lipídeos
14.
Nanoscale ; 15(1): 195-203, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36477469

RESUMO

The electrochemical production of H2O2via the two-electron oxygen reduction reaction (2e- ORR) has recently attracted attention as a promising alternative to the current anthraquinone process. Identification of active sites in O-doped carbon materials, which exhibit high activities and selectivities for the 2e- ORR, is important for understanding the selective electrocatalytic process and achieving the rational design of active electrocatalysts. However, this is impeded by the heterogeneous distribution of various active sites on these catalysts. In this study, we exploited the molecular functionalisation approach to implant anthraquinone, benzoic acid, and phenol groups on carbon nanotubes and systematically compared the electrocatalytic activities and selectivities of these functional groups. Among these oxygen functional groups, the anthraquinone group showed the highest surface-area-normalised and active-site-normalised activities.

15.
Nanoscale ; 14(40): 14913-14920, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36193715

RESUMO

High catalytic activity, long-term stability, and economical Pt-free catalysts for the hydrogen evolution reaction (HER) are required for the conversion of renewable energy systems. Noble nanomaterial Pt is a superior electrolysis catalyst for water splitting under typical experimental conditions with a relatively low overpotential. However, the use of Pt is limited by its high cost and activity degradation over time. Among several prospective alternatives, Ru has emerged as a promising alkaline electrolysis catalyst because of its significant catalytic activity and reduced cost compared to Pt. We designed and suggested Pd-doped hollow Ru-Te nanorods (PdRuTeNRs) via successive galvanic replacement reactions of sacrificial Te nanotemplates to further boost efficiency. The Pd/partially oxidized RuO2/Ru/Te hetero-interfaced composition exhibited an HER mass activity of 11.3 A g-1 Ru, twice that of Pt. In addition, the present PdRuTeNRs sufficiently maintained the activity from the 2000-cycle continuous test, greatly reducing the required cost by a quarter.

16.
Pharmaceutics ; 14(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145635

RESUMO

Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.

17.
ACS Appl Mater Interfaces ; 14(36): 40513-40521, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36049895

RESUMO

Rh is a noble metal introduced in bioapplications, including diagnosis and therapy, in addition to its consolidated utilization in organic catalysis and electrocatalysis. Herein, we designed the synthesis of highly crystalline Rh nanocrystal-decorated Rh-Te nanorods (RhTeNRs) through galvanic replacement of sacrificial Te nanorod (TeNR) templates and subsequent polyol regrowth. The obtained RhTeNRs showed excellent colloidal stability and efficient heat dissipation and photocatalytic activity under various laser irradiation wavelengths. Based on the confirmed biocompatibility, RhTeNRs were introduced into in vitro and in vivo cancer phototherapies. The results confirmed the selective physical death of cancer cells in the local area through laser irradiation. While chemotherapy does not guarantee successful treatment due to side effects and resistance, phototherapy using heat and reactive oxygen species generation of RhTeNRs induces physical death.


Assuntos
Nanotubos , Neoplasias , Ródio , Animais , Camundongos , Camundongos Endogâmicos BALB C , Nanotubos/química , Neoplasias/terapia , Fototerapia , Polímeros , Telúrio
18.
Biosens Bioelectron ; 210: 114300, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35489276

RESUMO

Cyanotoxins are toxins produced by cyanobacteria; they negatively impact water resources used by humans and disrupt ecosystems worldwide. Among cyanotoxins, saxitoxin (STX) is a small molecule that causes paralysis in humans and contamination in freshwater resources. To monitor low concentration of STX levels, a sensitive and high fidelity detection system is required. In this study, a round-type micro-gap electrode (RMGE) was fabricated that provides the high signal fidelity for STX detection in real freshwater sample. The RMGE has the 15 pairs of identical electrode wire length between gap that gives the high signal fidelity. In addition, the sensitivity for STX detection was improved by introducing the porous platinum nanoparticle (pPtNP) that enahced the electrochemical sensitivity and the STX aptamer was used as the bioprobe. An electrochemical measurement method (square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS)) was introduced to construct STX biosensor. To evaluate the biosensor performance, the limit of detection (LOD) and selectivity test were performed on real freshwater samples. The biosensor demonstrated high selectivity even in freshwater samples over a wide linear concentration range of 10 pg/mL to 1 µg/mL and a detection limit of 4.669 pg/mL. These results suggest that the designed biosensor shows a wide range of possibilities for the detection of toxicants in freshwater that provide the new direction to the biosensor electrode design.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Técnicas Biossensoriais/métodos , Ecossistema , Técnicas Eletroquímicas/métodos , Eletrodos , Água Doce , Humanos , Limite de Detecção , Oligonucleotídeos , Platina , Porosidade , Saxitoxina
19.
Biosens Bioelectron ; 207: 114159, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35290881

RESUMO

Rapid detection methods for cytokine storm markers, such as tumor necrosis factor α (TNF-α) and interferon gamma (IFN-γ), are required. Herein, we describe the fabrication of a rapid electrochemical dual-target biosensor composed of aptamer/MXene (Ti3C2) nanosheet on an Au microgap electrode. Alternating current electrothermal flow (ACEF) significantly reduced the detection time (<10 min) to achieve the rapid biosensor construction. Additionally, MXene nanosheet was synthesized to improve the detection sensitivity. A dual-type Au microgap electrode was designed to measure TNF-α and IFN-γ levels using a single biosensor. Moreover, it performs 12 measurements using a small sample volume. To reduce detection time with stable aptamer-target complex formation, various ACEF conditions were evaluated and optimized to 10 min. Using the optimal conditions, the limit of detection (LOD) and selectivity were determined by electrochemical impedance spectroscopy (EIS). A linear region was observed in the concentration range of 1 pg/mL to 10 ng/mL of TNF-α and IFN-γ. The LOD of TNF-α and IFN-γ were 0.15 pg/mL and 0.12 pg/mL within 10 min, respectively. Furthermore, the proposed biosensor detected TNF-α and IFN-γ diluted in 10% human serum in the concentration range of 1 pg/mL to 10 ng/mL with LODs of 0.25 pg/mL and 0.26 pg/mL, respectively.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Citocinas , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Humanos , Interferon gama , Limite de Detecção , Oligonucleotídeos , Fator de Necrose Tumoral alfa
20.
ACS Appl Mater Interfaces ; 14(8): 9987-10000, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176852

RESUMO

Chemical reactions between homogeneous precursors are typically used to synthesize monodisperse nanoparticles with well-controlled size and morphology. It is difficult to predict the evolved nanostructures when using two heterogeneous precursors. In this study, three types of Mo-Te nanoparticles shaped like leaves, spindles, and rice grains (denoted respectively as nanoleaf, nanospindle, and nanorice) were obtained from dextrose-mediated proton-coupled electron transfer reaction between the solid polyoxomolybdate (POM) and the ionic tellurite anion as precursors. All produced nanoparticles had excellent optical absorption in the ultraviolet(UV)-visible(Vis)-near-infrared(NIR) regions, with only slight deviations among them. After confirming nanoparticles' photothermal conversion and photocatalytic activity at multiple wavelengths, the Mo-Te nanorice was tested as a potential agent for cancer treatment due to its minimum toxicity, excellent colloidal stability, and intrinsic anticancer effect. Excellent treatment efficacy and clearance were confirmed in vitro and in vivo. Due to their photoacoustic imaging capability, the injection of pristine nanoparticles could also realize phototheranostics without using additional drugs, probes, or photosensitizers.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Técnicas Fotoacústicas/métodos , Fototerapia , Medicina de Precisão , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA