RESUMO
Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Anticorpos de Domínio Único , Animais , Anticorpos de Domínio Único/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Feminino , Camundongos Endogâmicos BALB C , Camelídeos Americanos/imunologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Anticorpos Antivirais/imunologia , Replicação Viral/efeitos dos fármacosRESUMO
BACKGROUND: c-Met signaling has been implicated in oncogenesis especially in cells with c-met gene amplification. Since 20 % of gastric cancer patients show high level of c-Met expression, c-Met has been identified as a good candidate for targeted therapy in gastric cancer. Herein, we report our newly synthesized c-Met inhibitor by showing its efficacy both in vitro and in vivo. METHODS: Compounds with both triazolopyrazine and pyridoxazine scaffolds were synthesized and tested using HTRF c-Met kinase assay. We performed cytotoxic assay, cellular phosphorylation assay, and cell cycle assay to investigate the cellular inhibitory mechanism of our compounds. We also conducted mouse xenograft assay to see efficacy in vivo. RESULTS: KRC-00509 and KRC-00715 were selected as excellent c-Met inhibitors through biochemical assay, and exhibited to be exclusively selective to c-Met by kinase panel assay. Cytotoxic assays using 18 gastric cancer cell lines showed our c-Met inhibitors suppressed specifically the growth of c-Met overexpressed cell lines, not that of c-Met low expressed cell lines, by inducing G1/S arrest. In c-met amplified cell lines, c-Met inhibitors reduced the downstream signals including Akt and Erk as well as c-Met activity. In vivo Hs746T xenograft assay showed KRC-00715 reduced the tumor size significantly. CONCLUSIONS: Our in vitro and in vivo data suggest KRC-00715 is a potent and highly selective c-Met inhibitor which may have therapeutic potential in gastric tumor with c-Met overexpression.
Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-met/biossíntese , Pirazinas/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , Triazóis/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas c-met/genética , Pirazinas/síntese química , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Triazóis/síntese química , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The synthesis of bis-ortho-alkoxy-para-piperazinesubstituted-2,4-dianilinopyrimidines is described and their structure-activity-relationship to anaplastic lymphoma kinase (ALK) is presented. KRCA-0008 is selective and potent to ALK and Ack1, and displays drug-like properties without hERG liability. KRCA-0008 demonstrates in vivo efficacy comparable to Crizotinib in xenograft mice model.
Assuntos
Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Crizotinibe , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Piperazinas/química , Piperazinas/farmacocinética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacocinética , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs.
RESUMO
A dry process using VUV light was confirmed as a novel technique to attach functional groups onto cup-stacked carbon nanotubes and to develop their isolation in a water system without the use of dispersing agents.