Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 3328, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228634

RESUMO

We demonstrate a simple experimental technology for characterizing the gas permeation properties of H2, He, N2 and Ar absorbed in polymers. This is based on the volumetric measurement of released gas and an upgraded diffusion analysis program after high-pressure exposure. Three channel measurements of sorption content of gases emitted from polymers after decompression are simultaneously conducted, and then, the gas uptake/diffusivity as a function of exposed pressure are determined in nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM) rubbers, low-density polyethylene (LDPE) and high-density polyethylene (HDPE), which are used for gas sealing materials under high pressure. The pressure-dependent gas transport behaviors of the four gases are presented and compared. Gas sorption follows Henry's law up to 9 MPa, while pressure-dependent diffusion behavior is not observed below 6 MPa. The magnitude of the diffusivity of the four gases decreases in the order DHe > DH2 > DAr > DN2 in all polymers, closely related to the kinetic diameter of the gas molecules. The dependence of gas species on solubility is in contrast to that on diffusivity. The linear correlation between logarithmic solubility and critical temperature of the gas molecule was newly observed.

2.
Polymers (Basel) ; 14(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335482

RESUMO

With the increasing interest in hydrogen energy, the stability of hydrogen storage facilities and components is emphasized. In this study, we analyzed the effect of high-pressure hydrogen gas treatment in silica-filled EPDM composites with different silica contents. In detail, cure characteristics, crosslink density, mechanical properties, and hydrogen permeation properties were investigated. Results showed that material volume, remaining hydrogen content, and mechanical properties were changed after 96.3 MPa hydrogen gas exposure. With an increase in the silica content, the crosslink density and mechanical properties increased, but hydrogen permeability was decreased. After treatment, high-silica-content composites showed lower volume change than low-silica-content composites. The crack damage due to the decompression caused a decrease in mechanical properties, but high silica content can inhibit the reduction in mechanical properties. In particular, EPDM/silica composites with a silica content of above 60 phr exhibited excellent resistance to hydrogen gas, as no change in their physical and mechanical properties was observed.

3.
Materials (Basel) ; 13(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344793

RESUMO

HfO2 was deposited at 80-250 °C by plasma-enhanced atomic layer deposition (PEALD), and properties were compared with those obtained by using thermal atomic layer deposition (thermal ALD). The ALD window, i.e., the region where the growth per cycle (GPC) is constant, shifted from high temperatures (150-200 °C) to lower temperatures (80-150 °C) in PEALD. HfO2 deposited at 80 °C by PEALD showed higher density (8.1 g/cm3) than those deposited by thermal ALD (5.3 g/cm3) and a smooth surface (RMS Roughness: 0.2 nm). HfO2 deposited at a low temperature by PEALD showed decreased contaminants compared to thermal ALD deposited HfO2. Values of refractive indices and optical band gap of HfO2 deposited at 80 °C by PEALD (1.9, 5.6 eV) were higher than those obtained by using thermal ALD (1.7, 5.1 eV). Transparency of HfO2 deposited at 80 °C by PEALD on polyethylene terephthalate (PET) was high (> 84%). PET deposited above 80 °C was unable to withstand heat and showed deformation. HfO2 deposited at 80 °C by PEALD showed decreased leakage current from 1.4 × 10-2 to 2.5 × 10-5 A/cm2 and increased capacitance of approximately 21% compared to HfO2 using thermal ALD. Consequently, HfO2 deposited at a low temperature by PEALD showed improved properties compared to HfO2 deposited by thermal ALD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA