Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 10812, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752737

RESUMO

Crosstalk between the gut microbiota and intestinal epithelium shapes the gut environment and profoundly influences the intestinal immune homeostasis. Glycosylphosphatidylinositol anchored proteins (GPI - APs) contribute to a variety of gut-associated immune functions, including microbial surveillance and defense, and epithelial cell polarity. Properly polarised epithelial cells are essential for the establishment of the barrier function of gut epithelia. The Piga gene is one among seven genes that encode for an enzyme which is involved in the first step of GPI-anchor biosynthesis. This is the first study reporting a knockout of the intestinal epithelial cell-specific Piga gene (Piga-/-) and its association with the gut microbiota in mice using a whole metagenome shotgun-based sequencing approach. An overall reduced microbiota diversity has been observed in the Piga-/- group as compared to the control group (ANOVA p = 0.34). The taxonomic biomarkers, namely: Gammaproteobacteria (class), Enterobacterales (order), Enterobacteriaceae (family), Escherichia (genus), Proteus (genus) and Escherichia coli (species), increased more in the Piga-/- mice as compared to in the control group. Further, the pathogenic E. coli strains, namely E. coli O157:H7 str. EDL 933 (EHEC), E. coli CFT073 (UPEC) and E. coli 536 (UPEC), were found in the Piga-/- mice which also harbored virulence factor transporters. In addition, the taxa responsible for short chain fatty acid production were decreased in the Piga-/- group. The Piga-/- mice gut harbored an increased number of microbial functions responsible for the survival of pathogens in the inflamed gut environment. Our observations clearly indicate that the Piga-/- mice gut might have an overall enhancement in pathogenic behaviour and reduced capabilities beneficial to health.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Microbioma Gastrointestinal , Animais , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Camundongos
2.
Sci Rep ; 12(1): 6748, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468931

RESUMO

In the present study, we elucidated the effect of grain-based (GB) diet containing both soluble and insoluble fibers and purified ingredients-based (PIB) diet containing only insoluble fiber, namely cellulose on mice gut microbiome using whole shotgun based metagenomic sequencing. Although the fiber content in both diet types is the same (5%) the presence of soluble fiber only in the GB diet differentiates it from the PIB diet. The taxonomic analysis of sequenced reads reveals a significantly higher enrichment of probiotic Lactobacilli in the GB group as compared to the PIB group. Further, the enhancement of energy expensive cellular processes namely, cell cycle control, cell division, chromosome partitioning, and transcription is observed in the GB group which could be due to the metabolization of the soluble fiber for faster energy production. In contrast, a higher abundance of cellulolytic bacterial community namely, the members of family Lachnospiraceae and Ruminococcaceae and the metabolism functions are found in the PIB group. The PIB group shows a significant increase in host-derived oligosaccharide metabolism functions indicating that they might first target the host-derived oligosaccharides and self-stored glycogen in addition to utilising the available cellulose. In addition to the beneficial microbial community variations, both the groups also exhibited an increased abundance of opportunistic pathobionts which could be due to an overall low amount of fiber in the diet. Furthermore, backtracing analysis identified probiotic members of Lactobacillus, viz., L. crispatus ST1, L. fermentum CECT 5716, L. gasseri ATCC 33323, L. johnsonii NCC 533 and L. reuteri 100-23 in the GB group, while Bilophila wadsworthia 3_1_6, Desulfovibrio piger ATCC 29098, Clostridium symbiosum WAL-14163, and Ruminococcaceae bacterium D16 in the PIB group. These data suggest that Lactobacilli, a probiotic community of microorganisms, are the predominant functional contributors in the gut of GB diet-fed mice, whereas pathobionts too coexisted with commensals in the gut microbiome of the PIB group. Thus at 5% fiber, GB modifies the gut microbial ecology more effectively than PIB and the inclusion of soluble fiber in the GB diet may be one of the primary factors responsible for this impact.


Assuntos
Metagenoma , Prebióticos , Animais , Celulose/farmacologia , Dieta , Fibras na Dieta/farmacologia , Grão Comestível , Lactobacillus/genética , Metagenômica , Camundongos
3.
3 Biotech ; 12(2): 56, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35186653

RESUMO

Fructooligosaccharides (FOS) are considered as prebiotics and are well known for their health-promoting properties, including antitumor, allergy-preventive, and infection-protective effects. They exert these effects by modulating the gut microbial composition and dynamics. In the present study, we performed a comparative whole metagenome shotgun sequencing analysis (WMGS) to elucidate the gut microbiota and secretary Immunoglobulin A (SIgA) dynamics as a result of 5% (w/w) FOS supplementation over a period of 7 days (fecal samples were collected every day). A number of taxa including Bacteroides, Lactobacillus, Roseburia, Clostridia, Faecalibaculum, and Enterorhabdus were found to be modulated with SIgA production in the murine gut. The process of SIgA production from FOS metabolization was found to be carried out via the production of short-chain fatty acids in the gut. Species of Bacteroides and Roseburia; namely, B. caccae, B. finegoldii, B. ovatus, B. thetaiotamicron, and Roseburia intestinalis, respectively, are predominantly responsible for FOS metabolization in the murine gut. The abundances of these bacterial species and their corresponding functions involved in FOS metabolization decreased over time even though these prebiotics were administered continuously for seven days. This suggests that there is a decrease in FOS metabolization over time. In addition, the present analysis suggests that the administration of FOS may help to reduce the pathogenic bacteria from the gut via SIgA production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-022-03116-3.

4.
PLoS One ; 15(3): e0228358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32208434

RESUMO

Inflammatory bowel disease results from alterations in the immune system and intestinal microbiota. The role of intestinal epithelial cells (IECs) in maintaining gut homeostasis is well known and its perturbation often causes gastrointestinal disorders including IBD. The epithelial specific adaptor protein (AP)-1B is involved in the establishment of the polarity of IECs. Deficiency of the AP-1B µ subunit (Ap1m2-/-) leads to the development of chronic colitis in mice. However, how this deficiency affects the gut microbes and its potential functions remains elusive. To gain insights into the gut microbiome of Ap1m2-/- mice having the colitis phenotype, we undertook shotgun metagenomic sequencing analysis of knockout mice. We found important links to the microbial features involved in altering various physiological pathways, including carbohydrate metabolism, nutrient transportation, oxidative stress, and bacterial pathogenesis (cell motility). In addition, an increased abundance of sulfur-reducing and lactate-producing bacteria has been observed which may aggravate the colitis condition.


Assuntos
Complexo 1 de Proteínas Adaptadoras/deficiência , Complexo 1 de Proteínas Adaptadoras/genética , Colite/genética , Colite/microbiologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Animais , Colite/complicações , Disbiose/complicações , Metagenômica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA