Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1791, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019969

RESUMO

Elevated cytoplasmic [Ca2+] is characteristic in severe skeletal and cardiac myopathies, diabetes, and neurodegeneration, and partly results from increased Ca2+ leak from sarcoplasmic reticulum stores via dysregulated ryanodine receptor (RyR) channels. Consequently, RyR is recognized as a high-value target for drug discovery to treat such pathologies. Using a FRET-based high-throughput screening assay that we previously reported, we identified small-molecule compounds that modulate the skeletal muscle channel isoform (RyR1) interaction with calmodulin and FK506 binding protein 12.6. Two such compounds, chloroxine and myricetin, increase FRET and inhibit [3H]ryanodine binding to RyR1 at nanomolar Ca2+. Both compounds also decrease RyR1 Ca2+ leak in human skinned skeletal muscle fibers. Furthermore, we identified compound concentrations that reduced leak by > 50% but only slightly affected Ca2+ release in excitation-contraction coupling, which is essential for normal muscle contraction. This report demonstrates a pipeline that effectively filters small-molecule RyR1 modulators towards clinical relevance.


Assuntos
Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Antibacterianos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/metabolismo , Cloroquinolinóis/farmacologia , Descoberta de Drogas , Flavonoides/farmacologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Músculo Esquelético/efeitos dos fármacos
2.
Sci Rep ; 8(1): 12560, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30135432

RESUMO

We have developed a structure-based high-throughput screening (HTS) method, using time-resolved fluorescence resonance energy transfer (TR-FRET) that is sensitive to protein-protein interactions in living cells. The membrane protein complex between the cardiac sarcoplasmic reticulum Ca-ATPase (SERCA2a) and phospholamban (PLB), its Ca-dependent regulator, is a validated therapeutic target for reversing cardiac contractile dysfunction caused by aberrant calcium handling. However, efforts to develop compounds with SERCA2a-PLB specificity have yet to yield an effective drug. We co-expressed GFP-SERCA2a (donor) in the endoplasmic reticulum membrane of HEK293 cells with RFP-PLB (acceptor), and measured FRET using a fluorescence lifetime microplate reader. We screened a small-molecule library and identified 21 compounds (Hits) that changed FRET by >3SD. 10 of these Hits reproducibly alter SERCA2a-PLB structure and function. One compound increases SERCA2a calcium affinity in cardiac membranes but not in skeletal, suggesting that the compound is acting specifically on the SERCA2a-PLB complex, as needed for a drug to mitigate deficient calcium transport in heart failure. The excellent assay quality and correlation between structural and functional assays validate this method for large-scale HTS campaigns. This approach offers a powerful pathway to drug discovery for a wide range of protein-protein interaction targets that were previously considered "undruggable".


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala/métodos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Técnicas Biossensoriais , Proteínas de Ligação ao Cálcio/química , Sobrevivência Celular , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA