Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res ; 204: 107190, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38704107

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.

2.
eNeuro ; 10(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37793806

RESUMO

Motor learning and flexibility allow animals to perform routine actions efficiently while keeping them flexible. A number of paradigms are used to test cognitive flexibility, but not many of them focus specifically on the learning of complex motor sequences and their flexibility. While many tests use operant or touchscreen boxes that offer high throughput and reproducibility, the motor actions themselves are mostly simple presses of a designated lever. To focus more on motor actions during the operant task and to probe the flexibility of these well trained actions, we developed a new operant paradigm for mice, the "timed sequence task." The task requires mice to learn a sequence of lever presses that have to be emitted in precisely defined time limits. After training, the required pressing sequence and/or timing of individual presses is modified to test the ability of mice to alter their previously trained motor actions. We provide a code for the new protocol that can be used and adapted to common types of operant boxes. In addition, we provide a set of scripts that allow automatic extraction and analysis of numerous parameters recorded during each session. We demonstrate that the analysis of multiple performance parameters is necessary for detailed insight into the behavior of animals during the task. We validate our paradigm in an experiment using the valproate model of autism as a model of cognitive inflexibility. We show that the valproate mice show superior performance at specific stages of the task, paradoxically because of their propensity to more stereotypic behavior.


Assuntos
Aprendizagem , Ácido Valproico , Camundongos , Animais , Reprodutibilidade dos Testes , Condicionamento Operante
3.
Mol Ther ; 31(2): 409-419, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369741

RESUMO

The accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) in the brain has been implicated in synapse failure and memory impairment in Alzheimer's disease. Here, we initially show that treatment with NUsc1, a single-chain variable-fragment antibody (scFv) that selectively targets a subpopulation of AßOs and shows minimal reactivity to Aß monomers and fibrils, prevents the inhibition of long-term potentiation in hippocampal slices and memory impairment induced by AßOs in mice. As a therapeutic approach for intracerebral antibody delivery, we developed an adeno-associated virus vector to drive neuronal expression of NUsc1 (AAV-NUsc1) within the brain. Transduction by AAV-NUsc1 induced NUsc1 expression and secretion in adult human brain slices and inhibited AßO binding to neurons and AßO-induced loss of dendritic spines in primary rat hippocampal cultures. Treatment of mice with AAV-NUsc1 prevented memory impairment induced by AßOs and, remarkably, reversed memory deficits in aged APPswe/PS1ΔE9 Alzheimer's disease model mice. These results support the feasibility of immunotherapy using viral vector-mediated gene delivery of NUsc1 or other AßO-specific single-chain antibodies as a potential therapeutic approach in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Anticorpos de Cadeia Única , Camundongos , Ratos , Humanos , Animais , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/terapia
4.
J Neurosci ; 42(13): 2786-2803, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35165173

RESUMO

Acetylcholine is an important modulator of striatal activity, and it is vital to controlling striatal-dependent behaviors, including motor and cognitive functions. Despite this significance, the mechanisms determining how acetylcholine impacts striatal signaling are still not fully understood. In particular, little is known about the role of nAChRs expressed by striatal interneurons. In the present study, we used FISH to determine which neuronal types express the most prevalent beta2 nicotinic subunit in the mouse striatum. Our data support a common view that nAChR expression is mostly restricted to striatal interneurons. Surprisingly though, cholinergic interneurons were identified as a population with the highest expression of beta2 nicotinic subunit. To investigate the functional significance of beta2-containing nAChRs in striatal interneurons, we deleted them by injecting the AAV-Cre vector into the striatum of beta2-flox/flox male mice. The deletion led to alterations in several behavioral domains, namely, to an increased anxiety-like behavior, decrease in sociability ratio, deficit in discrimination learning, and increased amphetamine-induced hyperlocomotion and c-Fos expression in mice with beta2 deletion. Further colocalization analysis showed that the increased c-Fos expression was present in both medium spiny neurons and presumed striatal interneurons. The present study concludes that, despite being relatively rare, beta2-containing nAChRs are primarily expressed in striatal neurons by cholinergic interneurons and play a significant role in behavior.SIGNIFICANCE STATEMENT A large variety of nAChRs are expressed in the striatum, a brain region that is crucial in the control of behavior. The complexity of receptors with different functions is hindering our understanding of mechanisms through which striatal acetylcholine modulates behavior. We focused on the role of a small population of beta2-containing nAChRs. We identified neuronal types expressing these receptors and determined their impact in the control of explorative behavior, anxiety-like behavior, learning, and sensitivity to stimulants. Additional experiments showed that these alterations were associated with an overall increased activity of striatal neurons. Thus, the small population of nicotinic receptors represents an interesting target for a modulation of response to stimulant drugs and other striatal-based behavior.


Assuntos
Receptores Nicotínicos , Acetilcolina/metabolismo , Animais , Colinérgicos/farmacologia , Corpo Estriado/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Nicotínicos/metabolismo
5.
FASEB J ; 36(2): e22135, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032355

RESUMO

In the striatum, cholinergic interneurons (CINs) have the ability to release both acetylcholine and glutamate, due to the expression of the vesicular acetylcholine transporter (VAChT) and the vesicular glutamate transporter 3 (VGLUT3). However, the relationship these neurotransmitters have in the regulation of behavior is not fully understood. Here we used reward-based touchscreen tests in mice to assess the individual and combined contributions of acetylcholine/glutamate co-transmission in behavior. We found that reduced levels of the VAChT from CINs negatively impacted dopamine signalling in response to reward, and disrupted complex responses in a sequential chain of events. In contrast, diminished VGLUT3 levels had somewhat opposite effects. When mutant mice were treated with haloperidol in a cue-based task, the drug did not affect the performance of VAChT mutant mice, whereas VGLUT3 mutant mice were highly sensitive to haloperidol. In mice where both vesicular transporters were deleted from CINs, we observed altered reward-evoked dopaminergic signalling and behavioral deficits that resemble, but were worse, than those in mice with specific loss of VAChT alone. These results demonstrate that the ability to secrete two different neurotransmitters allows CINs to exert complex modulation of a wide range of behaviors.


Assuntos
Acetilcolina/metabolismo , Colinérgicos/metabolismo , Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Animais , Dopamina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurotransmissores/metabolismo , Transdução de Sinais/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
6.
Curr Protoc ; 1(10): e268, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34679249

RESUMO

Sequential and cue-directed response learning in rodents have been previously shown to depend on intact striatal signaling. In particular, these behaviors rely on striatal dopamine and acetylcholine release, with an impairment of sequential response learning evident in animal models with alterations in the two systems. Here we provide a protocol for testing sequential response/response chain learning using the rodent touchscreen system. Specifically, the present protocol is designed to implement the heterogeneous sequence task, adapted from Keeler et al. (2014), in the rodent touchscreen apparatus. This task has been used previously to assess complex motor learning and response selection in mice. In the following protocol, the task is performed in touchscreen-based automated chambers with five response locations using food reinforcers to maintain performance. The sequence task requires the subject to make five nose pokes to white square stimuli appearing in five different locations sequentially from left to right. © 2021 Wiley Periodicals LLC. Basic Protocol: Implementation of the heterogeneous sequence task Support Protocol: Creation of the heterogeneous sequence task ABET II touchscreen schedule.


Assuntos
Aprendizagem , Roedores , Animais , Corpo Estriado , Camundongos
7.
Eur J Neurosci ; 54(6): 6075-6092, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34308559

RESUMO

Disruptions in social behaviour are prevalent in many neuropsychiatric disorders such as schizophrenia, bipolar disorder and autism spectrum disorders. However, the underlying neurochemical regulation of social behaviour is still not well understood. The central cholinergic system has been proposed to contribute to the regulation of social behaviour. For instance, decreased global levels of acetylcholine release in the brain leads to decreased social interaction and an impairment of social memory in mice. Nonetheless, it has been difficult to ascertain the specific brain areas where cholinergic signalling influences social preference and social memory. In this study, we investigated the impact of different forebrain cholinergic regions on social behaviour by examining mouse lines that differ in their regional expression level of the vesicular acetylcholine transporter-the protein that regulates acetylcholine secretion. We found that when cholinergic signalling is highly disrupted in the striatum, hippocampus, cortex and amygdala mice have intact social preference but are impaired in social memory, as they cannot remember a familiar conspecific nor recognize a novel one. A similar pattern emerges when acetylcholine release is disrupted mainly in the striatum, cortex, and amygdala; however, the ability to recognize novel conspecifics is retained. In contrast, cholinergic signalling of the striatum and amygdala does not appear to significantly contribute to the modulation of social memory and social preference. Furthermore, we demonstrated that increasing global cholinergic tone does not increase social behaviours. Together, these data suggest that cholinergic transmission from the hippocampus and cortex are important for regulating social memory.


Assuntos
Prosencéfalo Basal , Acetilcolina , Animais , Colinérgicos , Hipocampo/metabolismo , Masculino , Camundongos , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
8.
J Clin Invest ; 130(12): 6616-6630, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164988

RESUMO

Dysregulation of habit formation has been recently proposed as pivotal to eating disorders. Here, we report that a subset of patients suffering from restrictive anorexia nervosa have enhanced habit formation compared with healthy controls. Habit formation is modulated by striatal cholinergic interneurons. These interneurons express vesicular transporters for acetylcholine (VAChT) and glutamate (VGLUT3) and use acetylcholine/glutamate cotransmission to regulate striatal functions. Using mice with genetically silenced VAChT (VAChT conditional KO, VAChTcKO) or VGLUT3 (VGLUT3cKO), we investigated the roles that acetylcholine and glutamate released by cholinergic interneurons play in habit formation and maladaptive eating. Silencing glutamate favored goal-directed behaviors and had no impact on eating behavior. In contrast, VAChTcKO mice were more prone to habits and maladaptive eating. Specific deletion of VAChT in the dorsomedial striatum of adult mice was sufficient to phenocopy maladaptive eating behaviors of VAChTcKO mice. Interestingly, VAChTcKO mice had reduced dopamine release in the dorsomedial striatum but not in the dorsolateral striatum. The dysfunctional eating behavior of VAChTcKO mice was alleviated by donepezil and by l-DOPA, confirming an acetylcholine/dopamine deficit. Our study reveals that loss of acetylcholine leads to a dopamine imbalance in striatal compartments, thereby promoting habits and vulnerability to maladaptive eating in mice.


Assuntos
Acetilcolina/metabolismo , Corpo Estriado , Transtornos da Alimentação e da Ingestão de Alimentos/metabolismo , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Adulto , Animais , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Donepezila/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Transtornos da Alimentação e da Ingestão de Alimentos/tratamento farmacológico , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Transtornos da Alimentação e da Ingestão de Alimentos/fisiopatologia , Feminino , Humanos , Levodopa/farmacologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
9.
FASEB J ; 33(6): 7018-7036, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30857416

RESUMO

The pedunculopontine tegmental nucleus (PPT) and laterodorsal tegmental nucleus (LDT) are heterogeneous brainstem structures that contain cholinergic, glutamatergic, and GABAergic neurons. PPT/LDT neurons are suggested to modulate both cognitive and noncognitive functions, yet the extent to which acetylcholine (ACh) signaling from the PPT/LDT is necessary for normal behavior remains uncertain. We addressed this issue by using a mouse model in which PPT/LDT cholinergic signaling is highly decreased by selective deletion of the vesicular ACh transporter (VAChT) gene. This approach interferes exclusively with ACh signaling, leaving signaling by other neurotransmitters from PPT/LDT cholinergic neurons intact and sparing other cells. VAChT mutants were examined on different PPT/LDT-associated cognitive domains. Interestingly, VAChT mutants showed no attentional deficits and only minor cognitive flexibility impairments while presenting large deficiencies in both spatial and cued Morris water maze (MWM) tasks. Conversely, working spatial memory determined with the Y-maze and spatial memory measured with the Barnes maze were not affected, suggesting that deficits in MWM were unrelated to spatial memory abnormalities. Supporting this interpretation, VAChT mutants exhibited alterations in anxiety-like behavior and increased corticosterone levels after exposure to the MWM, suggesting altered stress response. Thus, PPT/LDT VAChT-mutant mice present little cognitive impairment per se, yet they exhibit increased susceptibility to stress, which may lead to performance deficits in more stressful conditions.-Janickova, H., Kljakic, O., Rosborough, K., Raulic, S., Matovic, S., Gros, R., Saksida, L. M., Bussey, T. J., Inoue, W., Prado, V. F., Prado, M. A. M. Selective decrease of cholinergic signaling from pedunculopontine and laterodorsal tegmental nuclei has little impact on cognition but markedly increases susceptibility to stress.


Assuntos
Cognição/fisiologia , Núcleos Laterais do Tálamo/fisiologia , Núcleo Tegmental Pedunculopontino/fisiologia , Estresse Fisiológico , Animais , Atenção , Corticosterona/sangue , Regulação da Expressão Gênica , Proteínas Vesiculares de Transporte de Acetilcolina/genética
10.
J Neurochem ; 142(6): 857-875, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28628197

RESUMO

Striatal cholinergic interneurons (CIN) are pivotal for the regulation of the striatal network. Acetylcholine (ACh) released by CIN is centrally involved in reward behavior as well as locomotor or cognitive functions. Recently, BAC transgenic mice expressing channelrhodopsin-2 (ChR2) protein under the control of the choline acetyltransferase (ChAT) promoter (ChAT-ChR2) and displaying almost 50 extra copies of the VAChT gene were used to dissect cholinergic circuit connectivity and function using optogenetic approaches. These mice display over-expression of the vesicular acetylcholine transporter (VAChT) and increased cholinergic tone. Consequently, ChAT-ChR2 mice are a valuable model to investigate hypercholinergic phenotypes. Previous experiments established that ChAT-ChR2 mice display an increased sensitivity to amphetamine induced-locomotor activity and stereotypes. In the present report, we analyzed the impact of VAChT over-expression in the striatum of ChAT-ChR2 mice. ChAT-ChR2 mice displayed increased locomotor sensitization in response to low dose of cocaine. In addition, we observed a dramatic remodeling of the morphology of CIN in ChAT-ChR2 transgenic mice. VAChT immunolabeling was markedly enhanced in the soma and terminal of CIN from ChAT-ChR2 mice as previously shown (Crittenden et al. 2014). Interestingly, the number of cholinergic varicosities was markedly reduced (-87%) whereas their size was significantly increased (+177%). Moreover, VAChT over-expression dramatically modified its trafficking along the somatodendritic and axonal arbor. These findings demonstrate that ChAT-ChR2 mice present major alterations of CIN neuronal morphology and increased behavioral sensitization to cocaine, supporting the notion that the increased levels of VAChT observed in these mice make them fundamentally different from wild-type mice.

11.
J Neurochem ; 142 Suppl 2: 90-102, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28421605

RESUMO

It is well established that neurons secrete neuropeptides and ATP with classical neurotransmitters; however, certain neuronal populations are also capable of releasing two classical neurotransmitters by a process named co-transmission. Although there has been progress in our understanding of the molecular mechanism underlying co-transmission, the individual regulation of neurotransmitter secretion and the functional significance of this neuronal 'bilingualism' is still unknown. Striatal cholinergic interneurons (CINs) have been shown to secrete glutamate (Glu) in addition to acetylcholine (ACh) and are recognized for their role in the regulation of striatal circuits and behavior. Our review highlights the recent research into identifying mechanisms that regulate the secretion and function of Glu and ACh released by CINs and the roles these neurons play in regulating dopamine secretion and striatal activity. In particular, we focus on how the transporters for ACh (VAChT) and Glu (VGLUT3) influence the storage of neurotransmitters in CINs. We further discuss how these individual neurotransmitters regulate striatal computation and distinct aspects of behavior that are regulated by the striatum. We suggest that understanding the distinct and complementary functional roles of these two neurotransmitters may prove beneficial in the development of therapies for Parkinson's disease and addiction. Overall, understanding how Glu and ACh secreted by CINs impacts striatal activity may provide insight into how different populations of 'bilingual' neurons are able to develop sophisticated regulation of their targets by interacting with multiple receptors but also by regulating each other's vesicular storage. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms.


Assuntos
Acetilcolina/metabolismo , Colinérgicos/farmacologia , Corpo Estriado/metabolismo , Interneurônios/metabolismo , Neostriado/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , Humanos , Interneurônios/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Transmissão Sináptica/fisiologia
12.
J Neurochem ; 140(5): 787-798, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27889925

RESUMO

Postural instability and gait disturbances, common disabilities in the elderly and frequently present in Parkinson's disease (PD), have been suggested to be related to dysfunctional cholinergic signaling in the brainstem. We investigated how long-term loss of cholinergic signaling from mesopontine nuclei influence motor behaviors. We selectively eliminated the vesicular acetylcholine transporter (VAChT) in pedunculopontine and laterodorsal tegmental nuclei cholinergic neurons to generate mice with selective mesopontine cholinergic deficiency (VAChTEn1-Cre-flox/flox ). VAChTEn1-Cre-flox/flox mice did not show any gross health or neuromuscular abnormality on metabolic cages, wire-hang and grip-force tests. Young VAChTEn1-Cre-flox/flox mice (2-5 months-old) presented motor learning/coordination deficits on the rotarod; moved slower, and had smaller steps on the catwalk, but showed no difference in locomotor activity on the open field. Old VAChTEn1-Creflox/flox mice (13-16 months-old) showed more pronounced motor learning/balance deficits on the rotarod, and more pronounced balance deficits on the catwalk. Furthermore, old mutants moved faster than controls, but with similar step length. Additionally, old VAChT-deficient mice were hyperactive. These results suggest that dysfunction of cholinergic neurons from mesopontine nuclei, which is commonly seen in PD, has causal roles in motor functions. Prevention of mesopontine cholinergic failure may help to prevent/improve postural instability and falls in PD patients. Read the Editorial Highlight for this article on page 688.


Assuntos
Transtornos Neurológicos da Marcha/genética , Neurônios/fisiologia , Núcleo Tegmental Pedunculopontino/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Animais , Transtornos Neurológicos da Marcha/psicologia , Deleção de Genes , Força da Mão , Deficiências da Aprendizagem/genética , Locomoção , Masculino , Camundongos , Transtornos das Habilidades Motoras/genética , Mutação/genética , Sistema Nervoso Parassimpático/citologia , Sistema Nervoso Parassimpático/fisiologia , Núcleo Tegmental Pedunculopontino/citologia , Equilíbrio Postural , Desempenho Psicomotor , Tegmento Mesencefálico/citologia , Tegmento Mesencefálico/metabolismo , Proteínas Vesiculares de Transporte de Acetilcolina/fisiologia
13.
Neuroscience ; 345: 130-141, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-27641830

RESUMO

Cognitive flexibility, the ability to adjust behavior in response to new and unexpected conditions in the environment, is essential for adaptation to new challenges and survival. The cholinergic system is an important modulator of this complex behavior however, the exact cholinergic circuits involved in this modulation and the precise influence of acetylcholine (ACh) in the process is still not fully understood. Here we review the role of different cholinergic circuits in cognitive flexibility. Strong evidence indicates that cholinergic interneurons (CINs) from the dorsomedial striatum are essential for facilitating the establishment of a new selected strategy; an effect that seems to depend mainly on activation of muscarinic receptors. Cholinergic neurons from the nucleus basalis magnocellularis (nBM), which project to the prefrontal cortex, seem to modulate the initial inhibition of a previously learned strategy, however, this concept is still controversial. Additionally, some studies suggest that basal forebrain cholinergic neurons projecting to the hippocampus, basolateral amygdala, and posterior parietal cortex may also participate on the modulation of cognitive flexibility. We highlight the fact that when investigating effects of ACh on behavioral flexibility, or any other behavior, one has to keep in mind two important particularities of the cholinergic system: (1) Many cholinergic neurons in the brain co-release glutamate or GABA with ACh. Methodologies that rely on neuronal silencing or ablation lead to simultaneous elimination of both neurotransmitters, making interpretation of results complex. (2) The cholinergic gene locus has a unique organization, with the vesicular acetylcholine transporter (VAChT) gene present within the intron between the first and second exons of the choline acetyltransferase (ChAT) gene. Thus, behavioral studies using transgenic animals generated with ChAT bacterial artificial chromosome (BAC) clones should be considered carefully, taking into consideration that these mice may overexpress VAChT and therefore, present a hypercholinergic tone that can be a confounder in behavioral studies.


Assuntos
Acetilcolina/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Função Executiva/fisiologia , Animais , Neurônios Colinérgicos/metabolismo , Vias Neurais/metabolismo
14.
Curr Alzheimer Res ; 12(10): 923-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26502816

RESUMO

Transgenic APPswe/PS1dE9 mice modeling Alzheimer's disease demonstrate ongoing accumulation of ß-amyloid fragments resulting in formation of amyloid plaques that starts at the age of 4-5 months. Buildup of ß-amyloid fragments is accompanied by impairment of muscarinic transmission that becomes detectable at this age, well before the appearance of cognitive deficits that manifest around the age of 12 months. We have recently demonstrated that long-term feeding of trangenic mice with specific isocaloric fish oil-based diets improves specific behavioral parameters. Now we report on the influence of short-term feeding (3 weeks) of three isocaloric diets supplemented with Fortasyn (containing fish oil and ingredients supporting membrane renewal), the plant sterol stigmasterol together with fish oil, and stigmasterol alone on markers of cholinergic neurotransmission in the hippocampus of 5-month-old transgenic mice and their wild-type littermates. Transgenic mice fed normal diet demostrated increase in ChAT activity and attenuation of carbachol-stimulated GTP-γ(35)S binding compared to wild-type mice. None of the tested diets compared to control diet influenced the activities of ChAT, AChE, BuChE, muscarinic receptor density or carbachol-stimulated GTP-γ(35)S binding in wild-type mice. In contrast, all experimental diets increased the potency of carbachol in stimulating GTP-γ(35)S binding in trangenic mice to the level found in wild-type animals. Only the Fortasyn diet increased markers of cholinergic synapses in transgenic mice. Our data demonstrate that even short-term feeding of transgenic mice with chow containing specific lipid-based dietary supplements can influence markers of cholinergic synapses and rectify impaired muscarinic signal transduction that develops in transgenic mice.


Assuntos
Doença de Alzheimer/dietoterapia , Doença de Alzheimer/fisiopatologia , Gorduras na Dieta/administração & dosagem , Hipocampo/fisiopatologia , Receptores Muscarínicos/metabolismo , Transmissão Sináptica/fisiologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Caspase 8/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo
15.
J Biol Chem ; 290(39): 23616-30, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26242733

RESUMO

Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional "three-finger" snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by "three-finger" snake neurotoxins.


Assuntos
Venenos Elapídicos/química , Neurotoxinas/metabolismo , Receptores Muscarínicos/metabolismo , Sequência de Aminoácidos , Animais , Elapidae , Dados de Sequência Molecular , Mutagênese Insercional , Neurotoxinas/química , Neurotoxinas/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
16.
Neuropharmacology ; 67: 272-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23206502

RESUMO

The overproduction of ß-amyloid (Aß) fragments in transgenic APPswe/PS1dE9 mice results in formation of amyloid deposits in the cerebral cortex and hippocampus starting around four months of age and leading to cognitive impairment much later. We have previously found an age and transgene-dependent weakening of muscarinic receptor-mediated transmission that was not present in young (6-10-week-old) animals but preceded both amyloid deposits and cognitive deficits. Now we investigated immediate and prolonged in vitro effects of non-aggregated Aß(1-42) on coupling of individual muscarinic receptor subtypes expressed in CHO (Chinese hamster ovary) cells and their underlying mechanisms. Immediate application of 1 µM Aß(1-42) had no effect on the binding of the muscarinic antagonist N-methylscopolamine or the agonist carbachol. In contrast, 4-day treatment of CHO cells expressing the M1 muscarinic receptor with 100 nM Aß(1-42) significantly changed the binding characteristics of the muscarinic agonist carbachol and reduced the extent of the M1 receptor-stimulated breakdown of phosphatidylinositol while it did not demonstrate overt toxic effects. The treatment had no influence on the expression of either G-proteins or muscarinic receptors. In concert, we found no change in the gene expression of muscarinic receptor subtypes and gene or protein expression of the G(s), G(q/11), and G(i/o) G-proteins in the cerebral cortex of young adult APPswe/PS1dE9 mice that demonstrate high concentrations of soluble Aß(1-42) and impaired muscarinic receptor-mediated G-protein activation. Our results provide strong evidence that the initial injurious effects of Aß(1-42) on M1 muscarinic receptor-mediated transmissionis is due to compromised coupling of the receptor with G(q/11) G-protein.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Desacopladores/farmacologia
17.
J Neurochem ; 120(4): 631-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22146060

RESUMO

Recent evidence indicates that supplementation with a specific combination of nutrients may affect cell membrane synthesis and composition. To investigate whether such nutrients may also modify the physical properties of membranes, and affect membrane-bound processes involved in signal transduction pathways, we studied the effects of nutrient supplementation on G protein-coupled receptor activation in vitro. In particular, we investigated muscarinic receptors, which are important for the progression of memory deterioration and pathology of Alzheimer's disease. Nerve growth factor differentiated pheochromocytoma cells that were supplemented with specific combinations of nutrients showed enhanced responses to muscarinic receptor agonists in a membrane potential assay. The largest effects were obtained with a combination of nutrients known as Fortasyn™ Connect, comprising docosahexaenoic acid, eicosapentaenoic acid, uridine monophosphate as a uridine source, choline, vitamin B6, vitamin B12, folic acid, phospholipids, vitamin C, vitamin E, and selenium. In subsequent experiments, it was shown that the effects of supplementation could not be attributed to single nutrients. In addition, it was shown that the agonist-induced response and the supplement-induced enhancement of the response were blocked with the muscarinic receptor antagonists atropine, telenzepine, and AF-DX 384. In order to determine whether the effects of Fortasyn™ Connect supplementation were receptor subtype specific, we investigated binding properties and activation of human muscarinic M1, M2 and M4 receptors in stably transfected Chinese hamster ovary cells after supplementation. Multi-nutrient supplementation did not change M1 receptor density in plasma membranes. However, M1 receptor-mediated G protein activation was significantly enhanced. In contrast, supplementation of M2- or M4-expressing cells did not affect receptor signaling. Taken together, these results indicate that a specific combination of nutrients acts synergistically in enhancing muscarinic M1 receptor responses, probably by facilitating receptor-mediated G protein activation.


Assuntos
Micronutrientes/farmacologia , Receptor Muscarínico M1/fisiologia , Regulação para Cima/fisiologia , Animais , Células CHO , Carbacol/farmacologia , Cricetinae , Cricetulus , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Humanos , Potenciais da Membrana/fisiologia , Micronutrientes/química , Células PC12 , Ligação Proteica , Ratos , Receptor Muscarínico M1/agonistas
18.
PLoS One ; 6(11): e27732, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110745

RESUMO

Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex "collides" with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to G(q/11), while even-numbered receptors prefer coupling to G(i/o). We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [(3)H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M(1) and M(3) receptors also pre-couple with non-preferential G(i/o) G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype and the class of G-protein.


Assuntos
Receptores Muscarínicos/metabolismo , Animais , Ligação Competitiva , Células CHO , Carbacol/metabolismo , Cricetinae , Cricetulus , Proteínas de Ligação ao GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Cinética , Mutação , N-Metilescopolamina/metabolismo , Receptores Muscarínicos/genética
19.
J Biol Chem ; 286(12): 10618-27, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21252236

RESUMO

Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 µM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 µM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4ß2 and α3ß2 nAChRs. Increasing ws-LYNX1 concentration to 10 µM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.


Assuntos
Proteínas Ligadas por GPI/química , Modelos Moleculares , Receptores Nicotínicos/química , Proteínas Adaptadoras de Transdução de Sinal , Animais , Bungarotoxinas/química , Bungarotoxinas/farmacologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Oócitos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Solubilidade , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA