Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15472-15483, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38751347

RESUMO

Conjugated molecules and polymers are being designed as acceptor and donor materials for organic photovoltaic (OPV) cells. OPV performance depends on generation of free charge carriers through dissociation of excitons, which are electron-hole pairs created when a photon is absorbed. Here, we develop a tight-binding model to describe excitons on homo-oligomers, alternating co-oligomers, and a non-fullerene acceptor - IDTBR. We parameterize our model using density functional theory (DFT) energies of neutral, anion, cation, and excited states of constituent moieties. A symmetric molecule like IDTBR has two ends where an exciton can sit; but the product wavefunction approximation for the exciton breaks symmetry. So, we introduce a tight-binding model with full correlation between electron and hole, which allows the exciton to coherently explore both ends of the molecule. Our approach predicts optical singlet excitation energies for oligomers of varying length as well as IDTBR in good agreement with time-dependent DFT and spectroscopic results.

2.
Acc Chem Res ; 56(19): 2631-2641, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37718487

RESUMO

ConspectusDespite the growing deployment of renewable energy conversion technologies, a number of large industrial sectors remain challenging to decarbonize. Aviation, heavy transport, and the production of steel, cement, and chemicals are heavily dependent on carbon-containing fuels and feedstocks. A hopeful avenue toward carbon neutrality is the implementation of renewable carbon for the synthesis of critical fuels, chemicals, and materials. Biomass provides an opportune source of renewable carbon, naturally capturing atmospheric CO2 and forming multicarbon linkages and useful chemical functional groups. The constituent molecules nonetheless require various chemical transformations, often best facilitated by catalytic nanomaterials, in order to access usable final products.Catalyzed transformations of renewable biomass compounds may intersect with renewable energy production by offering a means to utilize excess intermittent electricity and store it within chemical bonds. Electrochemical catalytic processes can often offer advantages in energy efficiency, product selectivity, and modular scalability compared to thermal-driven reactions. Electrocatalytic reactions with renewable carbon feedstocks can further enable related processes such as water splitting, where value-adding organic oxidation reactions may replace the evolution of oxygen. Organic electroreduction reactions may also allow desirable hydrogenations of bonds without intermediate formation of H2 and need for additional reactors.This Account highlights recent work aimed at gaining a fundamental understanding of transformations involving biomass-derived molecules in electrocatalytic nanomaterials. Particular emphasis is placed on the oxidation of biomass derived furanic compounds such as furfural and 5-hydroxymethylfurfural (HMF), which can yield value-added chemicals, including furoic acid (FA), maleic acid (MA), and 2,5-furandicarboxylic acid (FDCA) for renewable materials and other commodities. We highlight advanced implementations of online electrochemical mass spectrometry (OLEMS) and vibrational spectroscopies such as attenuated total reflectance surface enhanced infrared reflection absorption spectroscopy (ATR-SEIRAS), combined with microkinetic models (MKMs) and quantum chemical calculations, to shed light on the elementary mechanistic pathways involved in electrochemical biomass conversion and how these paths are influenced by catalytic nanomaterials. Perspectives are given on the potential opportunities for materials development toward more efficient and selective carbon-mitigating reaction pathways.

3.
ACS Appl Mater Interfaces ; 15(40): 47025-47036, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37756387

RESUMO

Electrolyte cations can have significant effects on the kinetics and selectivity of electrocatalytic reactions. We show an atypical mechanism through which electrolyte cations can impact electrocatalyst performance─direct incorporation of the cation into the oxide electrocatalyst lattice. We investigate the transformations of copper electrodes in alkaline electrochemistry through operando X-ray absorption spectroscopy in KOH and Ba(OH)2 electrolytes. In KOH electrolytes, both the near-edge structure and extended fine-structure agree with previous studies; however, the X-ray absorption spectra vary greatly in Ba(OH)2 electrolytes. Through a combination of electronic structure modeling, near-edge simulation, and postreaction characterization, we propose that Ba2+ cations are directly incorporated into the lattice and form an ordered BaCuO2 phase at potentials more oxidizing than 200 mV vs the normal hydrogen electrode (NHE). BaCuO2 formation is followed by further oxidation to a bulk Cu3+-like BaxCuyOz phase at 900 mV vs NHE. Additionally, during reduction in Ba(OH)2 electrolyte, we find both Cu-O bonds and Cu-Ba scattering persist at potentials as low as -400 mV vs NHE. To our knowledge, this is the first evidence for direct oxidative incorporation of an electrolyte cation into the bulk lattice to form a mixed oxide electrode. The oxidative incorporation of electrolyte cations to form mixed oxides could open a new route for the in situ formation of active and selective oxidation electrocatalysts.

4.
ACS Appl Mater Interfaces ; 15(23): 27878-27892, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37254918

RESUMO

CuO-based catalysts are active for the oxygen evolution reaction (OER), although the active form of copper for the OER is still unknown. We combine operando Raman experiments and density functional theory (DFT) electronic structure calculations to determine the form of Cu(O)xOHy present under OER conditions. Raman spectra show a distinct feature related to the active "Cu3+" species, which is only present under highly oxidizing conditions. DFT is used to produce theoretical Raman standards and match the unique Raman feature of copper under OER potentials. This method identifies a range of Cu3+-containing compounds which match the distinct Raman feature. We then integrate experimental electrochemistry to progressively eliminate possible structures and determine the stoichiometry of the active form as CuOOH, which likely takes the form of a surface-adsorbed hydroxide on a CuO surface. Bader charge analysis, site-projected wavefunctions, and density of states analysis show that electron density is removed from O 2p orbitals upon hydroxide adsorption, suggesting that the electronic structure exhibits d9L Cu2+ behavior rather than the local electronic structure of a formal Cu3+.

5.
Inorg Chem ; 62(3): 1113-1121, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36351259

RESUMO

Atomically dispersed organometallic clusters can provide well-defined nuclearity of active sites for both fundamental studies as well as new regimes of activity and selectivity in chemical transformations. More recently, dinuclear clusters adsorbed onto solid surfaces have shown novel catalytic properties resulting from the synergistic effect of two metal centers to anchor different reactant species. Difficulty in synthesizing, stabilizing, and characterizing isolated atoms and clusters without agglomeration challenges allocating catalytic performance to atomic structure. Here, we explore the stability of dinuclear rhodium and iridium clusters adsorbed onto layered titanate and niobate supports using molecular precursors. Both systems maintain their nuclearity when characterized using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Statistical analysis of HAADF-STEM images revealed that rhodium and iridium dimers had mean cluster-to-cluster distances very similar to what is expected from a random distribution of atoms over a large area, indicating that they are dispersed without aggregation. The stability of dinuclear rhodium clusters supported on titanate nanosheets was also investigated by X-ray absorption fine structure (EXAFS), DRIFTS, and first-principles calculations. Both X-ray absorption spectroscopy and HAADF-STEM simulations, guided by density functional theory (DFT)-optimized structure models, suggested that rhodium dimers adsorb onto the nanosheets in an end-on binding mode that is stable up to 100 °C under reducing conditions. This study highlights that crystalline nanosheets derived from layered metal oxides can be used as model supports to selectively stabilize dinuclear clusters, which could have implications for heterogeneous catalysis.


Assuntos
Ródio , Ródio/química , Irídio/química , Óxidos/química , Catálise
6.
Phys Rev Lett ; 131(24): 248001, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181128

RESUMO

Water polarizability at a metal interface plays an essential role in electrochemistry. We devise a classical molecular dynamics approach with an efficient description of metal polarization and a novel ac field method to measure the local dielectric response of interfacial water. Water adlayers next to the metal surface exhibit higher-than-bulk in-plane and negative out-of-plane dielectric constants, the latter corresponding physically to overscreening of the applied field. If we account for the gap region at the interface, the average out-of-plane dielectric constant is quite low (ε_{⊥}≈2), in agreement with reported measurements on confined thin films.

7.
J Phys Chem A ; 126(40): 7382-7398, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36190836

RESUMO

The thermodynamics of hydrogen bonds in aqueous and acidic solutions significantly impacts the kinetics and thermodynamics of acid reaction chemistry. We utilize in this work a multiscale approach, combining density functional theory (DFT) with classical molecular dynamics (MD) to model hydrogen bond thermodynamics in an acidic solution. Using thermodynamic cycles, we split the solution phase free energy into its gas phase counterpart plus solvation free energies. We validate this DFT/MD approach by calculating the aqueous phase hydrogen bond free energy between two water molecules (H2O-···-H2O), the free energy to transform an H3O+ cation into an H5O2+ cation, and the hydrogen bond free energy of protonated water clusters (H3O+-···-H2O and H5O2+-···-H2O). The computed equilibrium hydrogen bond free energy of H2O-···-H2O is remarkably accurate, especially considering the large individual contributions to the thermodynamic cycle. Turning to cations, we find the ion to be more stable than H3O+ by roughly 1-2 kBT. This small free energy difference allows for thermal fluctuation between the two idealized motifs, consistent with spectroscopic and simulation studies. Lastly, hydrogen bonding free energies between either H+ cation and H2O in solution were found to be stronger than between two H2O, though much less so than in vacuum because of dielectric screening in solution. Altogether, our results suggest the DFT/MD approach is promising for application in modeling hydrogen bonding and proton transfer thermodynamics in condensed phases.

8.
ACS Appl Mater Interfaces ; 14(33): 37637-37651, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35969512

RESUMO

Converting CO2 into value-added chemicals and fuels is one of the promising approaches to alleviate CO2 emissions, reduce the dependence on nonrenewable energy resources, and minimize the negative environmental effect of fossil fuels. This work used density functional theory (DFT) calculations combined with microkinetic modeling to provide fundamental insight into the mechanisms of CO2 hydrogenation to hydrocarbons over the iron carbide catalyst, with a focus on understanding the energetically favorable pathways and kinetic controlling factors for selective hydrocarbon production. The crystal orbital Hamiltonian population analysis demonstrated that the transition states associated with O-H bond formation steps within the path are less stable than those of C-H bond formation, accounting for the observed higher barriers in O-H bond formation from DFT. Energetically favorable pathways for CO2 hydrogenation to CH4 and C2H4 products were identified which go through an HCOO intermediate, while the CH* species was found to be the key C1 intermediate over χ-Fe5C2(510). The microkinetic modeling results showed that the relative selectivity to CH4 is higher than C2H4 in CO2 hydrogenation, but the trend is opposite under CO hydrogenation conditions. The major impact on C2 hydrocarbon production is attributed to the high surface coverage of O* from CO2 conversion, which occupies crucial active sites and impedes C-C couplings to C2 species over χ-Fe5C2(510). The coexistence of iron oxide and carbide phases was proposed and the interfacial sites created between the two phases impact CO2 surface chemistry. Adding potassium into the Fe5C2 catalyst accelerates O* removal from the carbide surface, enhances the stability of the iron carbide catalyst, thus, promotes C-C couplings to hydrocarbons.

9.
RSC Adv ; 12(32): 20599-20602, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35919152

RESUMO

The separation of butanes and butenes using MOF-74 (with two reticular MOFs with different pore sizes, Ni-IRMOF-74-I and Ni-IRMOF-74-II) was evaluated computationally using density functional theory. We identified that C4 alkene versus alkane selectivity stems from π-d chemical interactions, whereas selectivity differences among butenes stem from steric implications.

10.
Nat Chem ; 14(5): 523-529, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35115658

RESUMO

Intermetallic compounds offer unique opportunities for atom-by-atom manipulation of catalytic ensembles through precise stoichiometric control. The (Pd, M, Zn) γ-brass phase enables the controlled synthesis of Pd-M-Pd catalytic sites (M = Zn, Pd, Cu, Ag and Au) isolated in an inert Zn matrix. These multi-atom heteronuclear active sites are catalytically distinct from Pd single atoms and fully coordinated Pd. Here we quantify the unexpectedly large effect that active-site composition (that is, identity of the M atom in Pd-M-Pd sites) has on ethylene selectivity during acetylene semihydrogenation. Subtle stoichiometric control demonstrates that Pd-Pd-Pd sites are active for ethylene hydrogenation, whereas Pd-Zn-Pd sites show no measurable ethylene-to-ethane conversion. Agreement between experimental and density-functional-theory-predicted activities and selectivities demonstrates precise control of Pd-M-Pd active-site composition. This work demonstrates that the diversity and well-defined structure of intermetallics can be used to design active sites assembled with atomic-level precision.


Assuntos
Ligas , Paládio , Ligas/química , Domínio Catalítico , Etilenos , Hidrogenação , Paládio/química
11.
Angew Chem Int Ed Engl ; 60(45): 24220-24226, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473398

RESUMO

The hydrosilylation reaction is one of the largest-scale applications of homogeneous catalysis, and Pt homogeneous catalysts have been widely used in this reaction for the commercial manufacture of silicon products. However, homogeneous Pt catalysts result in considerable problems, such as undesired side reactions, unacceptable catalyst residues and disposable platinum consumption. Here, we synthesized electron-deficient Pt single atoms supported on humic matter (Pt1 @AHA_U_400), and the catalyst was used in hydrosilylation reactions, which showed super activity (turnover frequency as high as 3.0×107  h-1 ) and selectivity (>99 %). Density functional theory calculations reveal that the high performance of the catalyst results from the atomic dispersion of Pt and the electron deficiency of the Pt1 atoms, which is different from conventional Pt nanoscale catalysts. Excellent performance is maintained during recycle experiments, indicating the high stability of the catalyst.

12.
Phys Chem Chem Phys ; 22(35): 19659-19671, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32830207

RESUMO

Conjugated polymers possess a wide range of desirable properties including accessible band gaps, plasticity, tunability, mechanical flexibility and synthetic versatility, making them attractive for use as active materials in organic photovoltaics (OPVs). In particular, push-pull copolymers, consisting of alternating electron-rich and electron-deficient moieties, offer broad optical absorption, tunable band gaps, and increased charge transfer between monomer units. However, the large number of possible monomer combinations to explore means screening OPV copolymers by first-principles quantum calculations is computationally intensive. If copolymer band structures could be rapidly computed from homopolymer data, potential materials could be screened more efficiently. In this work, we construct tight binding models of copolymer band structures with parameters determined by density functional theory (DFT) calculations on homopolymers. We use these models to predict copolymer valence and conduction bands, which compare well to direct DFT calculations of copolymer band structures.

13.
J Am Chem Soc ; 142(11): 5184-5193, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32083859

RESUMO

The development of separate levers for controlling the bonding strength of different reactive species on catalyst surfaces is challenging but essential for the design of highly active and selective catalysts. For example, during CO2 reduction, production of CO often requires balancing a trade-off between the adsorption strength of the reactant and product states: weak binding of CO is desirable from a selectivity perspective, but weak binding of CO2 leads to low activity. Here, we demonstrate a new method of controlling both CO2 adsorption and CO desorption over supported metal catalysts by employing a single self-assembly step where organic monolayer films were deposited on the catalyst support. Binding of phosphonic acid monolayers on supported Pt and Pd catalysts weakened CO binding via a through-support effect. The weakened CO adsorption was generally accompanied by decreased adsorption and reactivity of CO2. However, by the incorporation of basic amine functions at controlled positions in the modifying film, strong CO2 adsorption and hydrogenation reactivity could be restored. Thus, both through-surface and through-space interactions could be manipulated by design of the organic modifiers. After surface modification, the catalysts exhibited significantly improved selectivity (up to ∼99% at conversions near 50%) and activity toward CO production. Moreover, the rate of deactivation was notably reduced due to prevention of CO poisoning.

14.
Phys Chem Chem Phys ; 22(7): 4032-4042, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32025674

RESUMO

Conjugated polymers are potential next-generation materials for organic electronic devices. The ability of these materials to transport charges is a key factor limiting their performance. Charge carriers in conjugated polymers are localized by disorder and polaronic effects. Charge transport in these materials is often described by thermally activated hopping, with a rate given by Marcus theory. The polaron hopping activation energy determines the temperature dependence of the Marcus rate. This energy barrier is dictated by the transition state, in which the charge carrier is equally divided between the initial and final locations. The prefactor for the polaron hopping rate is set by the charge tunneling rate between the initial and final locations. We use a tight-binding polaron model, in which charge carriers are stabilized by both nuclear reorganization and polarization of the surrounding dielectric, to compute the activation energy, charge tunneling rate and overall rate constant for intrachain and interchain charge hopping processes in poly(3-hexylthiophene) (P3HT) crystalline lamellae and amorphous melts. Charge transport in these two environments is limited by interchain hopping processes. Both hopping barriers and rates predicted by the model are in good agreement with experiments on a variety of crystalline and amorphous P3HT materials. Qualitatively, the barriers largely depend on how well the transition state is stabilized by polarization effects, and on the hopping integral between the initial and final locations, both of which penalize hopping over longer distances.

15.
J Phys Chem B ; 123(34): 7410-7423, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31387353

RESUMO

Density functional theory (DFT) calculations were performed to investigate the effects of zeolite confinement and solvent on propylene epoxidation with H2O2 over the titanium silicalite-1 (TS-1) catalyst. The 144T and 143T cluster models containing typical 10MR channels of TS-1 were constructed to represent the tripodal(2I) and Ti/defect sites. It was found that the confinement of the zeolite pore channel not only impacts the adsorption stability of guest molecules but also alters reaction barriers, as compared to the results obtained based on small cluster models. When dispersion corrections were considered, an enhancement of the adsorption stability of guest molecules was observed because of the important contribution from van der Waals interactions, especially for propylene adsorption. An explicit protic methanol molecule was introduced into the catalytic system to probe the influence of the solvent on propylene epoxidation, based on which a significant enhancement of CH3OH-H2O2 co-adsorption was obtained owing to H-bond formation. More importantly, the energy barrier for H2O2 dissociation was largely reduced by ∼13 kcal/mol because of the participation of the methanol in the H-transfer process and the formation of H-bond network, resulting in an alteration of the rate-limiting step. By comparison, adding an aprotic acetonitrile solvent did not have substantial effect on reaction path and kinetics. The calculation results clearly demonstrate the important role of the protic methanol solvent, which not only strengthens the adsorption of guest molecules but also promotes the kinetics for propylene epoxidation with H2O2 over TS-1 catalyst.

16.
Phys Chem Chem Phys ; 21(22): 11999-12011, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31134991

RESUMO

Organic photovoltaics offer a potential low-cost alternative to inorganic solar cells. Crucial to the performance of these devices is the generation of free charges, which occurs through the dissociation of excitons. Here we study excitons in polythiophenes, their stability and energetics of dissociation and separation into charge carriers. Excitons are excited electron and hole pairs bound by Coulomb interactions. To separate into unbound charges, the exciton binding energy must be overcome. We use a tight binding Hamiltonian to describe the exciton binding energy and its dissociation potential, for an exciton confined to a single polymer chain. Our model accounts for polaronic effects, arising from reorganization of nuclei and from polarization of the surrounding dielectric, which stabilize the separated carriers and thereby affect the exciton dissociation potential. We examine the effects of an applied electric field on the dissociation potential, and relate the field strength necessary to unbind the hole-electron pair to the maximum attractive Coulomb force between them. We apply our model to study the exciton at a donor-acceptor interface on a block-copolymer. Interfacial polarization alters the exciton binding potential, rendering the hole-electron pair easier to unbind.

17.
Macromol Rapid Commun ; 40(15): e1900134, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31116905

RESUMO

All conjugated polymers examined to date exhibit significant cumulative lattice disorder, although the origin of this disorder remains unclear. Using atomistic molecular dynamics (MD) simulations, the detailed structures for single crystals of a commonly studied conjugated polymer, poly(3-hexylthiophene-2,5-diyl) (P3HT) are obtained. It is shown that thermal fluctuations of thiophene rings lead to cumulative disorder of the lattice with an effective paracrystallinity of about 0.05 in the π-π stacking direction. The thermal-fluctuation-induced lattice disorder can in turn limit the apparent coherence length that can be observed in diffraction experiments. Calculating mobilities from simulated crystal structures demonstrates that thermal-fluctuation-induced lattice disorder even enhances charge transport in P3HT. The mean inter-chain charge transfer integral is enhanced with increasing cumulative lattice disorder, which in turn leads to pathways for fast charge transport through crystals.


Assuntos
Simulação de Dinâmica Molecular , Polímeros/química , Temperatura , Tiofenos/química
18.
J Chem Phys ; 150(4): 041708, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709282

RESUMO

Electrochemical ammonia synthesis could provide a sustainable and efficient alternative to the energy intensive Haber-Bosch process. Development of an active and selective N2 electroreduction catalyst requires mechanism determination to aid in connecting the catalyst composition and structure to performance. Density functional theory (DFT) calculations are used to examine the elementary step energetics of associative N2 reduction mechanisms on two low index Fe surfaces. Interfacial water molecules in the Heyrovsky-like mechanism help lower some of the elementary activation barriers. Electrode potential dependent barriers show that cathodic potentials below -1.5 V-RHE (reversible hydrogen electrode) are necessary to give a significant rate of N2 electroreduction. DFT barriers suggest a larger overpotential than expected based on elementary reaction free energies. Linear Brønsted-Evans-Polanyi relationships do not hold across N-H formation steps on these surfaces, further confirming that explicit barriers should be considered in DFT studies of the nitrogen reduction reaction.

19.
Chem Sci ; 10(44): 10310-10317, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-32110318

RESUMO

Transition metal dichalcogenides (TMDs) are well known catalysts as both bulk and nanoscale materials. Two-dimensional (2-D) TMDs, which contain single- and few-layer nanosheets, are increasingly studied as catalytic materials because of their unique thickness-dependent properties and high surface areas. Here, colloidal 2H-WS2 nanostructures are used as a model 2-D TMD system to understand how high catalytic activity and selectivity can be achieved for useful organic transformations. Free-standing, colloidal 2H-WS2 nanostructures containing few-layer nanosheets are shown to catalyze the selective hydrogenation of a broad scope of substituted nitroarenes to their corresponding aniline derivatives in the presence of other reducible functional groups. Microscopic and computational studies reveal the important roles of sulfur vacancy-rich basal planes and tungsten-terminated edges, which are more abundant in nanostructured 2-D materials than in their bulk counterparts, in enabling the functional group selectivity. At tungsten-terminated edges and on regions of the basal planes having high concentrations of sulfur vacancies, vertical adsorption of the nitroarene is favored, thus facilitating hydrogen transfer exclusively to the nitro group due to geometric effects. At lower sulfur vacancy concentrations on the basal planes, parallel adsorption of the nitroarene is favored, and the nitro group is selectively hydrogenated due to a lower kinetic barrier. These mechanistic insights reveal how the various defect structures and configurations on 2-D TMD nanostructures facilitate functional group selectivity through distinct mechanisms that depend upon the adsorption geometry, which may have important implications for the design of new and enhanced 2-D catalytic materials across a potentially broad scope of reactions.

20.
J Am Chem Soc ; 140(48): 16580-16588, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30396270

RESUMO

Anion-exchange membrane fuel cells hold promise to greatly reduce cost by employing nonprecious metal cathode catalysts. More efficient anode catalysts are needed, however, to improve the sluggish hydrogen oxidation reaction in alkaline electrolytes. We report that BCC-phased PdCu alloy nanoparticles, synthesized via a wet-chemistry method with a critical thermal treatment, exhibit up to 20-fold HOR improvement in both mass and specific activities, compared with the FCC-phased PdCu counterparts. HOR activity of the BCC-phased PdCu is 4 times or 2 times that of Pd/C or Pt/C, respectively, in the same alkaline electrolyte. In situ HE-XRD measurements reveal that the transformation of PdCu crystalline structure favors, at low annealing temperature (<300 °C), the formation of FCC structure. At higher annealing temperatures (300-500 °C), a BCC structure dominates the PdCu NPs. Density functional theory (DFT) computations unravel a similar H binding strength and a much stronger OH binding of the PdCu BCC surface (cf. FCC surface), both of which are simultaneously close to those of Pt surfaces. The synergistic optimization of both H and OH binding strengths is responsible for the enhancement of HOR activity on BCC-phased PdCu, which could serve as an efficient anode catalyst for anion-exchange membrane fuel cells. This work might open a new route to develop efficient HOR catalysts from the perspective of crystalline structure transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA