Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338873

RESUMO

State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10-6 S·cm-1 at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10-5 S·cm-1 and further increases to 10-3 S·cm-1 in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.


Assuntos
Líquidos Iônicos , Propano/análogos & derivados , Lítio , Eletrólitos , Íons , Poli A , Polímeros
2.
Biomacromolecules ; 24(12): 5797-5806, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37939018

RESUMO

Amyloid ß peptide can aggregate into thin ß-sheet fibrils or plaques deposited on the extracellular matrix, which is the hallmark of Alzheimer's disease. Multifunctional macromolecular structures play an important role in inhibiting the aggregate formation of amyloidogenic materials and thus are promising candidates with antiamyloidogenic characteristics for the development of next-generation therapeutics. In this study, we evaluate how small differences in the dendritic topology of these structures influence their antiamyloidogenic activity by the comparison of "perfectly dendritic" and "pseudodendritic" macromolecules, both decorated with mannose units. Their compactness, the position of surface units, and the size of glyco-architectures influence their antiamyloidogenic activity against Aß 40, a major component of amyloid plaques. For the advanced analysis of the aggregation of the Aß peptide, we introduce asymmetric flow field flow fractionation as a suitable method for the quantification of large and delicate structures. This alternative method focuses on the quantification of complex aggregates of Aß 40 and glycodendrimer/glyco-pseudodendrimer over different time intervals of incubation, showing a good correlation to ThT assay and CD spectroscopy results. Kinetic studies of the second-generation glyco-pseudodendrimer revealed maximum inhibition of Aß 40 aggregates, verified with atomic force microscopy. The second-generation glyco-pseudodendrimer shows the best antiamyloidogenic properties confirming that macromolecular conformation in combination with optimal functional group distribution is the key to its performance. These molecular properties were validated and confirmed by molecular dynamics simulation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Substâncias Macromoleculares , Fragmentos de Peptídeos/química
3.
Nanomaterials (Basel) ; 13(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887963

RESUMO

Single-walled carbon nanotubes (SWCNTs) have unique thermal and electrical properties. Coating them with a thin metal layer can provide promising materials for many applications. This study presents a bio-inspired, environmentally friendly technique for CNT metallization using polydopamine (PDA) as an adhesion promoter, followed by electroless plating with nickel. To improve the dispersion in the aqueous reaction baths, part of the SWCNTs was oxidized prior to PDA coating. The SWCNTs were studied before and after PDA deposition and metallization by scanning and transmission electron microscopy, scanning force microscopy, and X-ray photoelectron spectroscopy. These methods verified the successful coating and revealed that the distribution of PDA and nickel was significantly improved by the prior oxidation step. Thermoelectric characterization showed that the PDA layer acted as a p-dopant, increasing the Seebeck coefficient S of the SWCNTs. The subsequent metallization decreased S, but no negative S-values were reached. Both coatings affected the volume conductivity and the power factor, too. Thus, electroless metallization of oxidized and PDA-coated SWCNTs is a suitable method to create a homogeneous metal layer and to adjust their conduction type, but more work is necessary to optimize the thermoelectric properties.

4.
Sci Rep ; 13(1): 5185, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997554

RESUMO

In this experimental study, we investigate the nonlinear dynamic response of nanocomposite beams composed of polybutylene terephthalate (PBT) and branched carbon nanotubes (bCNTs). By varying the weight fraction of bCNTs, we obtain frequency response curves for cantilever specimens under harmonic base excitations, measuring the tip displacement via 3D scanning laser vibrometry. Our findings reveal a surprising nonlinear softening trend in the steady-state response of the cantilevers, which gets switched into hardening for higher bCNT weight fractions and increasing oscillation amplitudes. The interaction of bCNTs with the thermoplastic hosting matrix results in stick-slip hysteresis, causing a softening nonlinearity that counteracts the geometric hardening associated with the nonlinear curvature of the first mode of the cantilever. However, when the weight fraction of bCNTs is greater than 1%, the bridging of the branched CNTs leads to the formation of a strong network that contributes to the hardening response at higher oscillation amplitudes. This mechanical behavior is detected by the trend of the nonlinear harmonic spectra and the equivalent damping ratio estimated using the half-power bandwidth method. To predict the observed unusual experimental behavior, we use a nonlinear mathematical model of the nanocomposite cantilever samples derived from a 3D mesoscale hysteretic model of the PBT/bCNT material. Our results suggest that the presence of bCNTs in a thermoplastic matrix is the main driver of the highly tunable nonlinear stiffness and damping capacity of the material. The reported experimental and modeling results provide valuable insights into the nonlinear dynamic behavior of PBT/bCNT nanocomposites and have potential applications in the design of advanced materials with tailored mechanical properties.

5.
Biomacromolecules ; 23(9): 3648-3662, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981858

RESUMO

Most sophisticated biological functions and features of cells are based on self-organization, and the coordination and connection between their cell organelles determines their key functions. Therefore, spatially ordered and controllable self-assembly of polymersomes to construct clusters to simulate complex intracellular biological functions has attracted widespread attention. Here, we present a simple one-step copper-free click strategy to cross-link nanoscale pH-responsive and photo-cross-linked polymersomes (less than 100 nm) to micron-level clusters (more than 90% in 0.5-2 µm range). Various influencing factors in the clustering process and subsequent purification methods were studied to obtain optimal clustered polymeric vesicles. Even when polymeric vesicles separately loaded with different enzymes (glucose oxidase and myoglobin) are coclustered, the overall permeability of the clusters can still be regulated through tuning the pH values on demand. Compared with simple blending of those enzyme-loaded polymersomes, the rate of enzymatic cascade reaction increased significantly due to the interconnected complex microstructure established. The connection of catalytic nanocompartments into clusters confining different enzymes of a cascade reaction provides an excellent platform for the development of artificial systems mimicking natural organelles or cells.


Assuntos
Células Artificiais , Análise por Conglomerados , Glucose Oxidase , Concentração de Íons de Hidrogênio , Polímeros/química
6.
Int J Pharm ; 624: 122023, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35843363

RESUMO

The polymer/solvent system poly(l-lactic acid)/ethyl butylacetylaminopropionate (PLLA/IR3535) is regarded as an insect-repellent-delivery system, serving, e.g., for fighting mosquito-borne tropical diseases. In such systems the solid polymer hosts the liquid repellent, with the latter slowly released to the environment, expelling mosquitoes. As a new approach, exceeding prior work about application of different technologies to obtain such devices, in this work, samples of the polymer/repellent system PLLA/IR3535 were prepared by 3D-printing. The experiments showed that it is possible to print 3D-parts containing up to 25 m% repellent, with an only minor loss of repellent during the printing process. For samples containing low amount of repellent, crystallization of PLLA was suppressed due to the rather fast cooling step and the low bed temperature of around 25 °C, being lower than the glass transition temperature of the homogeneous polymer/repellent strands. At higher repellent concentration, due to the lowering of the glass transition temperature to near or even below ambient temperature, the crystallinity slowly increased during storage after printing. For all samples, regardless of the initial repellent concentration, the repellent-release rate increases with temperature, and at ambient temperature the release-time constant is in the order of 10 days. The study successfully proved the applicability of the technology of extrusion-based 3D-printing for the preparation of polymer parts with a specific shape/design containing mosquito-repellent at a concentration which raises the expectation to be used as a repellent delivery-device.


Assuntos
Repelentes de Insetos/administração & dosagem , Repelentes de Insetos/química , Impressão Tridimensional , Doenças Transmitidas por Vetores/prevenção & controle , Animais , Insetos , Poliésteres , Polímeros/química , Propionatos/química , Clima Tropical
7.
Polymers (Basel) ; 14(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35808760

RESUMO

This study followed the approach of dispersing and localizing carbon nanotubes (CNTs) in nanostructured domains of block copolymers (BCPs) by shortening the CNTs via ball milling. The aim was to selectively tune the electrical and mechanical properties of the resulting nanocomposites, e.g., for use as sensor materials. Multiwalled carbon nanotubes (MWCNTs) were ground into different size fractions. The MWCNT length distribution was evaluated via transmission electron microscopy and dynamic light scattering. The nanostructure of the BCPs and the glass transition temperatures of the PB-rich and PS phases were not strongly affected by the addition of CNTs up to 2 wt%. However, AFM and TEM investigations indicated a partial localization of the shortened CNTs in the soft PB-rich phase or at the interface of the PB-rich and PS phase, respectively. The stress-strain behavior of the solution-mixed composites differed little from the mechanical property profile of the neat BCP and was largely independent of CNT amount and CNT size fraction. Significant changes could only be observed for Young's modulus and strain at break and may be attributed to CNT localization and small changes in morphology. For nanocomposites with unmilled CNTs, the electrical percolation threshold was less than 0.1 wt%. As the CNTs were shortened, the resistivity increased and the percolation threshold shifted to higher CNT contents. Composites with CNTs ground for 7.5 h and 13.5 h showed no bulk conductivity but significantly decreased surface resistivity on the bottom side of the films, which could be attributed to a sedimentation process of the grind and thereby highly compressed CNT agglomerates during evaporation.

8.
Polymers (Basel) ; 14(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35631923

RESUMO

Demand for direct chemical modification of functional material on a surface is increasing in various fields. A new approach for a functionalized surface is investigated by applying a conventional laser in order to generate chemical activation by photothermal energy. Poly(ethyleneimine) (PEI), with a high density of amino groups, is chemically grafted on poly(methyl methacrylate) (PMMA) by irradiation of a CO2 laser (10.6 µm). Laser parameters such as power, scan rate, and focal length are observed to play an important role in order to introduce effective photothermal energy for the chemical reaction between PEI and PMMA. By optimization of laser parameters, the amide compound is produced as a result of the reaction of amine from PEI and the ester of PMMA successfully. The PMMA surface modified with PEI is analyzed by XPS and TOF-SIMS to identify the functional groups. Furthermore, the surface is characterized in terms of wettability, adhesion force, and surface charge for various applications. Finally, reaction with dye and metal on the amine-terminated PMMA shows promising results in supplying a selective and reliable functional substrate.

9.
Mater Horiz ; 9(5): 1468-1478, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35244665

RESUMO

Self-powered tactile module-based electronic skins incorporating triboelectric nanogenerator (TENG) appears to be a worthwhile alternative for smart monitoring devices in terms of sustainable energy harvesting. On top of it, ultra-stretchability and detection sensitivity are imperative to mimic human skin. We report, for the first time, a metal-free single electrode TENG-based self-powered tactile module comprising of microwells (diameters 2 µm and 200 nm, respectively) on fluoroelastomer (FKM) and laser induced graphene (LIG) electrodes by in situ simultaneous transfer printing method. Direct imprinting of both the active surface and LIG electrode on a tribonegative FKM has not been attempted before. The resulting triboelectric module exhibits impressive maximum power density of 715 mW m-2, open circuit voltage and maximum output current of 148 V and 9.6 µA respectively for a matching load of 10 MΩ. Moreover, the TENG unit is very robust and sustained high electrical output even at 200% elongation. A dielectric-to-dielectric TENG-based tactile sensor is also constructed using FKM (negative tribolayer) and TiO2 deposited micropatterned PDMS. Resulting tribo-sensor demonstrates remarkable motion and force sensitivity. It can also distinguish subtle human contact force that can simulate skin with high sensitivity and therefore, can be utilized for potential e-skin/bionic skin applications in health and human-machine interfaces.


Assuntos
Nanotecnologia , Dispositivos Eletrônicos Vestíveis , Elasticidade , Eletrodos , Humanos , Impressão Tridimensional
10.
ACS Appl Mater Interfaces ; 14(4): 5921-5931, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040627

RESUMO

Metallization is a common method to produce functional or decorative coatings on plastic surfaces. State-of-the-art technologies require energy-intensive process steps and the use of organic solvents or hazardous substances to achieve sufficient adhesion between the polymer and the metal layer. The present study introduces a facile bio-inspired "green" approach to improve this technology: the use of dopamine, a small-molecule mimic of the main structural component of adhesive mussel proteins, as an adhesion promoter. To understand dopamine adhesion and identify conditions for successful metallization, polyethylene surfaces were dip-coated with dopamine and metallized with nickel by electroless metallization; essential parameters such as temperature, pH value, concentration of dopamine and buffer, and the deposition time were systematically varied. Effects of adding oxidants to the dopamine bath, cross-linking, thermal and UV post-treatment of the polydopamine film, and plasma pretreatment of the substrate were investigated. The properties of the polydopamine layer and the quality of the metal film were studied by physico-chemical, optical, and mechanical techniques. It was shown that simple dip-coating of the substrate with dopamine under optimal conditions is sufficient to support metal layers with a good optical quality. Technologically relevant metal layer quality and adhesion were obtained with annealed and UV-treated polydopamine films and enhanced by plasma pretreatment of the substrate. The study shows that dopamine provides a new interfacial design for plastic metallization that can reduce energy consumption, use of hazardous substances, and reject rate during manufacturing. The results are essential findings for further technological developments of a universal platform to promote adhesion between plastics and metal or potentially also other material classes, enabling economic material development and more eco-friendly applications.


Assuntos
Indóis/química , Níquel/química , Polietileno/química , Polímeros/química , Adesividade , Dopamina/química , Química Verde , Polimerização , Propriedades de Superfície
11.
Soft Matter ; 17(6): 1457-1462, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33538750

RESUMO

Based on the widely studied poly(l-lactic acid) (PLLA) and polyethylene terephthalate (PET) that are brittle in their fully crystalline form, this Letter shows that they can be made to be super ductile, heat resistant and optically clear by creating nano-sized crystals while preserving the entanglement network. Atomic force microscopic images confirm the perceived nano-confined crystallization. Time-resolved X-ray scattering/diffraction measurements reveal the emergence of cold crystallization during either stress relaxation from large stepwise melt-stretching or annealing of pre-melt-stretched PLLA and PET above Tg. Mechanical tests show that these polymers in such a new state are rigid even well above Tg, e.g., at 100 °C.

12.
ACS Macro Lett ; 10(6): 684-689, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35549104

RESUMO

The different thermal stabilities of shear-induced pointlike and shishlike crystallization precursors of polyamide 11, generated in a parallel-plate rheometer and coexisting in the same sample, were quantified by hot-stage microscopy, by performing self-seed crystallization experiments. Crystals formed at low supercooling of the melt from these different types of precursors melt at about the same temperature. Annealing of the melt at different temperatures for a predefined time revealed dissolution/disordering of these precursors at 10-15 K higher temperature, near the equilibrium melting point. Despite their similar thermal stabilities, pointlike and shishlike crystallization precursors exhibit distinctly different nucleation efficacies. Under identical crystallization conditions, shishlike precursors cause faster crystallization than pointlike crystal nuclei. The faster crystallization of the shishlike nuclei can be explained, for example, by (a) the larger size of the shishlike precursors, providing numerous nucleation sites; (b) the more perfect chain conformation at the shish surface, which serves as a substrate for crystallization; or perhaps (c) the higher local orientation of the surrounding melt compared with molecular segments near pointlike nuclei, reducing the activation energy for crystallization.

13.
Langmuir ; 36(50): 15283-15295, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33306910

RESUMO

Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) is an attractive polymer for switchable surface coatings based on its multiresponsiveness toward environmental triggers (temperature, pH-value, ionic strength). In this in situ study, we present the complex and tunable thermoresponsiveness of PDMAEMA Guiselin brushes (9 nm, dry thickness), which were prepared via an efficient grafting-to approach. Combining in situ atomic force microscopy (AFM) visualizing the surface topography (x-y plane) and spectroscopic ellipsometry monitoring the swelling behavior of the polymer film (layer thickness, z-direction) offers for the first time a three-dimensional insight into thermoresponsive transitions on the nanoscale. While PDMAEMA films exhibit LCST behavior in the presence of monovalent counterions, it can easily be switched toward an UCST thermoresponsiveness via the addition of small quantities of multivalent ions. In both cases, the transition temperature as well as the sharpness and reversibility of the transition can be tuned via a second external trigger, the ionic strength. Whereas homogeneous surfaces were observed both below and above the LCST in monovalent salt solutions, the UCST transition was characterized by the in situ formation of a nanostructured surface of pinned PDMAEMA micelles with entrapped multivalent counterions. Moreover, it was demonstrated for the first time that the characteristic dimensions of the nanopattern (the diameter and height of the pinned micelles) could be tuned in situ by the pH- and induced UCST thermoresponsiveness of PDMAEMA. This approach therefore provides a novel bottom-up strategy to create and control polymeric nanostructures in an aqueous environment.

14.
ACS Omega ; 5(31): 19639-19653, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32803059

RESUMO

Microencapsulated phase change materials (PCMs) are attracting increasing attention as functional fillers in polymer matrices, to produce smart thermoregulating composites for applications in thermal energy storage (TES) and thermal management. In a polymer composite, the filler-matrix interfacial adhesion plays a fundamental role in the thermomechanical properties. Hence, this work aims to modify the surface of commercial PCM microcapsules through the formation of a layer of polydopamine (PDA), a bioinspired polymer that is emerging as a powerful tool to functionalize chemically inert surfaces due to its versatility and great adhesive potential in many different materials. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) evidenced that after PDA coating, the surface roughness increased from 9 to 86 nm, which is beneficial, as it allows a further increase in the interfacial interaction by mechanical interlocking. Spectroscopic techniques allowed investigating the surface chemistry and identifying reactive functional groups of the PDA layer and highlighted that, unlike the uncoated microcapsules, the PDA layer is able to react with oxirane groups, thereby forming a covalent bond with the epoxy matrix. Hot-stage optical microscopy and differential scanning calorimetry (DSC) highlighted that the PDA modification does not hinder the melting/crystallization process of the paraffinic core. Finally, SEM micrographs of the cryofracture surface of epoxy composites containing neat or PDA-modified microcapsules clearly evidenced improved adhesion between the capsule shell and the epoxy matrix. These results showed that PDA is a suitable coating material with considerable potential for increasing the interfacial adhesion between an epoxy matrix and polymer microcapsules with low surface reactivity. This is remarkably important not only for this specific application but also for other classes of composite materials. Future studies will investigate how the deposition parameters affect the morphology, roughness, and thickness of the PDA layer and how the layer properties influence the capsule-matrix adhesion.

15.
Polymers (Basel) ; 12(1)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963666

RESUMO

The crystallization behavior of fully biobased poly(butylene isophthalate) (PBI) has been investigated using calorimetric and microscopic techniques. PBI is an extremely slow crystallizing polymer that leads, after melt-crystallization, to the formation of lamellar crystals and rather large spherulites, due to the low nuclei density. Based upon quantitative analysis of the crystal-nucleation behavior at low temperatures near the glass transition, using Tammann's two-stage nuclei development method, a nucleation pathway for an acceleration of the crystallization process and for tailoring the semicrystalline morphology is provided. Low-temperature annealing close to the glass transition temperature (Tg) leads to the formation of crystal nuclei, which grow to crystals at higher temperatures, and yield a much finer spherulitic superstructure, as obtained after direct melt-crystallization. Similarly to other slowly crystallizing polymers like poly(ethylene terephthalate) or poly(l-lactic acid), low-temperature crystal-nuclei formation at a timescale of hours/days is still too slow to allow non-spherulitic crystallization. The interplay between glass relaxation and crystal nucleation at temperatures slightly below Tg is discussed.

16.
Biomacromolecules ; 21(1): 199-213, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31619036

RESUMO

While personalized therapy bears an enormous potential in cancer therapy, the development of flexible, tailorable delivery systems remains challenging. Here, we present a "tool-kit" of various avidin-based bioconjugates (BCs) for the preparation of personalized delivery systems. Corresponding BCs were synthesized using the self-assembly of avidin with various biotinylated ligands, such as one cationic glycodendrimer for dendriplex adsorption and two functional ligands for imaging (glycodendrimers with DOTA or NOTA units) or targeting (biotinylated PEG decorated with ligands). Substituting antibodies for targeting small molecules were coupled to biotin-PEG compounds for addressing the folate receptor (FR), epidermal growth factor receptor (EGFR), and prostate-specific membrane antigen (PSMA). After successful characterization and proof of good storage and redispersion properties of BCs, cytotoxicity assays and first in vivo imaging studies with 99mTc-complexing bioconjugates provide evidence that these BCs and their avidin analogues can be used as tool-kit components in theranostic systems for personalized medicine.


Assuntos
Quelantes/química , Meios de Contraste/química , Peptídeos/química , Animais , Antígenos de Superfície/metabolismo , Avidina/química , Biotina/química , Dendrímeros/química , Diagnóstico por Imagem , Receptores ErbB/metabolismo , Ácido Fólico/química , Glutamato Carboxipeptidase II/metabolismo , Células HEK293 , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Nanomedicina/métodos , Polietilenoglicóis/química , Neoplasias da Próstata/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
17.
ACS Appl Mater Interfaces ; 11(41): 38147-38159, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31512852

RESUMO

Improving energy dissipation in lightweight polymer nanocomposites to achieve environmentally friendly and mechanically stable structures has reached a limit because of the low-density electrostatic interactions that can be harnessed through the stick-slip mechanism between carbonaceous nanofillers and polymeric chains wrapped around them. In this paper, the atomic friction between the two nanocomposite components is greatly amplified by locally increasing the density of the energetically higher noncovalent bonds. This gives rise to a new material design concept in which crystallite structures, nucleated around the carbonaceous nanofillers, become the source of enhanced energy dissipation. The rheological concept is a nanopiston unit consisting of a carbon nanotube (CNT) as a nanofiller coated with crystallite structures which, upon unconventionally and reversibly overcoming the interfacial interaction forces, monolithically roto-translate from an energetically stable state to the adjacent states. The efficiency of this novel "sliding crystals" mechanism is proven by its higher dissipation capability that turns out to be at least twice as much as that of the conventional CNT/polymer stick-slip within a larger strain range.

18.
Biomacromolecules ; 20(9): 3408-3424, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31389692

RESUMO

This study describes new mechanistic insights in the sequential polyassociation of streptavidin with biotinylated poly(ethyleneimine) glycopolymers and biotinylated PEGylated folic acid components for the preparation of biohybrid structures (BHS) for controlled targeting experiments. Characterization of the BHS revealed that during the formation and postfunctionalization of BHS, reversible dissociation and reassociation processes occur. The BHS are stable over weeks after finalizing the equilibrium-driven polyassociation process. Cellular uptake studies showed that this sequential polyassociation involving biotinylated PEGylated folic acid components does not lead to enhanced cellular uptake of the resulting BHS. In contrast, polyplexes, containing small interfering RNA and bioconjugates (1:1 molar ratio between biotinylated glycopolymer and monomeric streptavidin-lectin fusion protein), enabled us to control the targeting of tumor cells as revealed by knockdown of the tumor-associated protein survivin. Overall, this study demonstrates the high potential of (networklike) streptavidin-biotin interactions with a dynamic character in the formation of complex BHS and extracellular matrix materials.


Assuntos
Ácido Fólico/química , Nanopartículas/química , Polietilenoimina/química , RNA Interferente Pequeno/química , Avidina/química , Biotina/química , Biotinilação , Ácido Fólico/síntese química , Humanos , Polietilenoimina/síntese química , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/efeitos dos fármacos , Estreptavidina/química
19.
J Phys Chem B ; 123(24): 5168-5175, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31125234

RESUMO

A new biomimetic stimuli-responsive adaptive elastomeric material, whose mechanical properties are altered by a water treatment is reported in this paper. This material is a calcium sulphate (CaSO4) filled composite with an epoxidized natural rubber (ENR) matrix. By exploiting various phase transformation processes that arise when CaSO4 is hydrated, several different crystal structures of CaSO4· xH2O can be developed in the cross-linked ENR matrix. Significant improvements in the mechanical and thermal properties are then observed in the water-treated composites. When compared with the untreated sample, there is approximately 100% increase in the dynamic modulus. The thermal stability of the composites is also improved by increasing the maximum degradation rate temperature by about 20 °C. This change in behavior results from an in situ development of hydrated crystal structures of the nanosized CaSO4 particles in the ENR matrix, which has been verified using Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and X-ray scattering. This work provides a promising and relatively simple pathway for the development of next generation of mechanically adaptive elastomeric materials by an eco-friendly route, which may eventually also be developed into an innovative biodegradable and biocompatible smart polymeric material.

20.
Polymers (Basel) ; 11(3)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30960519

RESUMO

Induction heating is efficient, precise, cost-effective, and clean. The heating process is coupled to an electrically conducting material, usually a metal. As most polymers are dielectric and non-conducting, induction heating is not applicable. In order to transfer energy from an electromagnetic field into polymer induction structures, conducting materials or materials that absorb the radiation are required. This report gives a brief overview of induction heating processes used in polymer technology. In contrast to metals, most polymer materials are not affected by electromagnetic fields. However, an unwanted temperature rise of the polymer can occur when a radio frequency field is applied. The now available high-field magnetic sources provide a new platform for induction heating at very low frequencies, avoiding unwanted thermal effects within the material. Using polycarbonate and octadecylamine as an example, it is demonstrated that induction heating performed by a magnetic-field pulse with a maximum flux density of 59 T can be used to initiate chemical reactions. A 50 nm thick Ag loop, with a mean diameter of 7 mm, placed in the polymer-polymer interface acts as susceptor and a resistive heating element. The formation of urethane as a linker compound was examined by infrared spectroscopic imaging and differential scanning calorimetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA