Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part B Rev ; 25(3): 237-248, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30794111

RESUMO

IMPACT STATEMENT: Tissue Engineering (TE) approaches are needed to advance the field of reconstructive urology. We indicate that regeneration of ureteral tissue and the formation of a urinary diversion using TE approaches are possible, although it is currently very time-consuming and complex to achieve well-developed neotissue. Faster regeneration approaches using novel scaffolds are desirable. The findings of this review may help to develop smart hybrid scaffolds and enhance the design of future studies, which may ultimately lead to improved care for patients with ureteral defects as well as to curb complications associated with urinary diversion.


Assuntos
Procedimentos de Cirurgia Plástica/métodos , Regeneração , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Ureter/citologia , Derivação Urinária/reabilitação , Animais , Humanos
2.
ACS Biomater Sci Eng ; 4(9): 3282-3290, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30221191

RESUMO

Clinical implementation of novel products for tissue engineering and regenerative medicine requires a validated sterilization method. In this study, we investigated the effect of γ-irradiation and EtO degassing on material characteristics in vitro and the effect on template remodeling of hybrid tubular constructs in a large animal model. Hybrid tubular templates were prepared from type I collagen and Vicryl polymers and sterilized by 25 kGray of γ-irradiation or EtO degassing. The in vitro characteristics were extensively studied, including tensile strength analysis and degradation studies. For in vivo evaluation, constructs were subcutaneously implanted in goats for 1 month to form vascularized neo-tissue. Macroscopic and microscopic appearances of the γ- and EtO-sterilized constructs slightly differed due to additional processing required for the COL-Vicryl-EtO constructs. Regardless of the sterilization method, incubation in urine resulted in fast degradation of the Vicryl polymer and decreased strength (<7 days). Incubation in SBF was less invasive, and strength was maintained for at least 14 days. The difference between the two sterilization methods was otherwise limited. In contrast, subcutaneous implantation showed that the effect of sterilization was considerable. A well-vascularized tube was formed in both cases, but the γ-irradiated construct showed an organized architecture of vasculature and was mechanically more comparable to the native ureter. Moreover, the γ-irradiated construct showed advanced tissue remodeling as shown by enhanced ECM production. This study shows that the effect of sterilization on tissue remodeling cannot be predicted by in vitro analyses alone. Thus, validated sterilization methods should be incorporated early in the development of tissue engineered products, and this requires both in vitro and in vivo analyses.

3.
Adv Healthc Mater ; 7(18): e1800605, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30058274

RESUMO

In vivo monitoring of tissue-engineered constructs is important to assess their integrity, remodeling, and degradation. However, this is challenging when the contrast with neighboring tissues is low, necessitating labeling with contrast agents (CAs), but current CAs have limitations (i.e., toxicity, negative contrast, label instability, and/or inappropriate size). Therefore, a naturally derived hemin-L-lysine (HL) complex is used as a potential CA to label collagen-based templates for magnetic resonance imaging (MRI). Labeling does not change the basic characteristics of the collagen templates. When hybrid templates composed of collagen type I reinforced with degradable polymers are subcutaneously implanted in mice, longitudinal visualization by MRI is possible with good contrast and in correlation with template remodeling. In contrast, unlabeled collagen templates are hardly detectable and the fate of these templates cannot be monitored by MRI. Interestingly, tissue remodeling and vascularization are enhanced within HL-labeled templates. Thus, HL labeling is presented as a promising universal imaging marker to label tissue-engineered implants for MRI, which additionally seems to accelerate tissue regeneration.


Assuntos
Colágeno Tipo I/química , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Engenharia Tecidual/métodos , Animais , Feminino , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Alicerces Teciduais/química
4.
Lab Anim ; 51(5): 538-541, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28948892

RESUMO

It is common to test medical devices in large animal studies that are or could also be used in humans. In this short report we describe the use of a ureteral J-stent for the evaluation of biodegradable tubular constructs for tissue reconstruction, and the regeneration of ureters in Saanen goats. Similarly to a previous study in pigs, the ureteral J-stent was blindly inserted until some resistance was met. During evaluation of the goats after three months, perforation of the renal cortex by the stent was observed in four out of seven animals. These results indicated that blind stent placement was not possible in goats. In four new goats, clinical protocols were followed using X-ray and iodinated contrast fluids to visualize the kidney and stent during stent placement. With this adaptation the stents were successfully placed in the kidneys of these four new goats with minimal additional effort. It is likely that other groups in other fields ran into similar problems that could have been avoided by following clinical protocols. Therefore, we would like to stress the importance of following clinical protocols when using medical devices in animals to prevent unnecessary suffering and to reduce the number of animals needed.


Assuntos
Animais de Laboratório/cirurgia , Stents , Ureter/cirurgia , Animais , Protocolos Clínicos , Cabras , Humanos , Suínos
5.
Acta Biomater ; 52: 1-8, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179160

RESUMO

Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. STATEMENT OF SIGNIFICANCE: In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression and chemical crosslinking, mimicking the folding pattern observed in many tubular organs. In rest, the lumen is closed but it opens upon increase of luminal pressure, e.g. when fluids pass. Human epithelial cells seeded on the luminal side adhered well and were compatible with voiding dynamics in a bioreactor. Collagen scaffolds with radial elasticity may be useful in the regeneration of dynamic tubular organs.


Assuntos
Órgãos Bioartificiais , Colágeno Tipo I/química , Células Epiteliais/citologia , Regeneração Tecidual Guiada/instrumentação , Técnicas de Cultura de Órgãos/instrumentação , Organogênese/fisiologia , Materiais Biocompatíveis/química , Proliferação de Células/fisiologia , Células Cultivadas , Células Epiteliais/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Proteínas da Matriz Extracelular/química , Humanos , Teste de Materiais , Impressão Tridimensional , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais
6.
J Urol ; 196(4): 1279-86, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27185613

RESUMO

PURPOSE: A readily available artificial urinary conduit might be substituted for autologous bowel in standard urinary diversions and minimize bowel associated complications. However, the use of large constructs remains challenging as host cellular ingrowth and/or vascularization is limited. We investigated large, reinforced, collagen based tubular constructs in a urinary diversion porcine model and compared subcutaneously pre-implanted constructs to cell seeded and basic constructs. MATERIALS AND METHODS: Reinforced tubular constructs were prepared from type I collagen and biodegradable Vicryl® meshes through standard freezing, lyophilization and cross-linking techniques. Artificial urinary conduits were created in 17 female Landrace pigs, including 7 with a basic untreated construct, 5 with a construct seeded with autologous urothelial and smooth muscle cells, and 5 with a free graft formed by subcutaneous pre-implantation of a basic construct. All pigs were evaluated after 1 month. RESULTS: The survival rate was 94%. At evaluation 1 basic and 1 cell seeded conduit were occluded. Urinary flow was maintained in all conduits created with pre-implanted constructs. Pre-implantation of the basic construct resulted in a vascularized tissue tube, which could be used as a free graft to create an artificial conduit. The outcome was favorable compared to that of the other conduits. Urinary drainage was better, hydroureteronephrosis was limited and tissue regeneration was improved. CONCLUSIONS: Subcutaneous pre-implantation of a basic reinforced tubular construct resulted in a vascularized autologous tube, which may potentially replace bowel in standard urinary diversions. To our knowledge we introduce a straightforward 2-step procedure to create artificial urinary conduits in a large animal model.


Assuntos
Bioprótese , Colágeno Tipo I/química , Poliglactina 910 , Engenharia Tecidual/métodos , Derivação Urinária/métodos , Animais , Feminino , Teste de Materiais , Modelos Animais , Suínos , Bexiga Urinária/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA