RESUMO
Lakes are fundamental to society and nature, yet they are currently exposed to excessive nutrients and climate change, resulting in algal blooms. In the future, this may change, but how and where still needs more scientific attention. Here, we explore future trends in algal blooms in lakes globally for >3500 'representative lakes' for the year 2050, considering the attribution of both nutrient and climate factors. We soft-coupled a process-based lake ecosystem model (PCLake+) with a watershed nutrient model (MARINA-Multi) to assess trends in algal blooms in terms of the Trophic State Index for chlorophyll-a (TSI-Chla). Globally between 2010 and 2050, we show a rising trend in algal blooms under fossil-fuelled development (TSI-Chla increase in 91 % of lakes) and a declining trend under sustainable development (TSI-Chla decrease in 63 % of lakes). These changes are significantly attributed to nutrients. While not always significant, climate change attributions point to being unfavourable for lakes in 2050, exacerbating lake water quality. Our study stresses prioritising responsible nutrient and climate management on policy agendas. This implies that the future of algal blooms in lakes is in our hands.
RESUMO
Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.
Assuntos
Biodiversidade , Mudança Climática , Extinção BiológicaRESUMO
Worldwide, anthropogenic activities threaten surface water quality by aggravating eutrophication and increasing total nitrogen to total phosphorus (TN:TP) ratios. In hydrologically connected systems, water quality management may benefit from in-ecosystem nutrient retention by preventing nutrient transport to downstream systems. However, nutrient retention may also alter TN:TP ratios with unforeseen consequences for downstream water quality. Here, we aim to increase understanding of how nutrient retention may influence nutrient transport to downstream systems to improve long-term water quality management. We analyzed lake ecosystem state, in-lake nutrient retention, and nutrient transport (ratios) for 3482 Chinese lakes using the lake process-based ecosystem model PCLake+. We compared a low climate change and sustainability-, and a high climate change and economy-focused scenario for 2050 against 2012. In both scenarios, the effect of nutrient input reduction outweighs that of temperature rise, resulting in more lakes with good ecological water quality (i.e., macrophyte-dominated) than in 2012. Generally, the sustainability-focused scenario shows a more promising future for water quality than the economy-focused scenario. Nevertheless, most lakes remain phytoplankton-dominated. The shift to more macrophyte-dominated lakes in 2050 is accompanied by higher nutrient retention fractions and less nutrient transport to downstream waterbodies. In-lake nutrient retention also alters the water's TN:TP ratio, depending on the inflow TN:TP ratio and the ecosystem state. In 2050 higher TN:TP ratios are expected in the outflows of lakes than in 2012, especially for the sustainability-focused scenario with strong TP loading reduction. However, the downstream impact of increased TN:TP ratios depends on actual nutrient loadings and the limiting nutrient in the receiving system. We conclude that nutrient input reductions, improved water quality, higher in-lake nutrient retention fractions, and lower nutrient transport to downstream waterbodies go hand in hand. Therefore, water quality management could benefit even more from nutrient pollution reduction than one would expect at first sight.
RESUMO
Bioclimatic envelope models are commonly used to assess the influence of climate change on species' distributions and biodiversity patterns. Understanding how methodological choices influence these models is critical for a comprehensive evaluation of the estimated impacts. Here we systematically assess the performance of bioclimatic envelope models in relation to the selection of predictors, modeling technique, and pseudo-absences. We considered (a) five different predictor sets, (b) seven commonly used modeling techniques and an ensemble model, and (c) three sets of pseudo-absences (1,000 pseudo-absences, 10,000 pseudo-absences, and the same as the number of presences). For each combination of predictor set, modeling technique, and pseudo-absence set, we fitted bioclimatic envelope models for 300 species of mammals, amphibians, and freshwater fish, and evaluated the predictive performance of the models using the true skill statistic (TSS), based on a spatially independent test set as well as cross-validation. On average across the species, model performance was mostly influenced by the choice of predictor set, followed by the choice of modeling technique. The number of the pseudo-absences did not have a strong effect on the model performance. Based on spatially independent testing, ensemble models based on species-specific nonredundant predictor sets revealed the highest predictive performance. In contrast, the Random Forest technique yielded the highest model performance in cross-validation but had the largest decrease in model performance when transferred to a different spatial context, thus highlighting the need for spatially independent model evaluation. We recommend building bioclimatic envelope models according to an ensemble modeling approach based on a nonredundant set of bioclimatic predictors, preferably selected for each modeled species.
RESUMO
Worldwide, eutrophication is threatening lake ecosystems. To support lake management numerous eutrophication models have been developed. Diverse research questions in a wide range of lake ecosystems are addressed by these models. The established models are based on three key approaches: the empirical approach that employs field surveys, the theoretical approach in which models based on first principles are tested against lab experiments, and the process-based approach that uses parameters and functions representing detailed biogeochemical processes. These approaches have led to an accumulation of field-, lab- and model-based knowledge, respectively. Linking these sources of knowledge would benefit lake management by exploiting complementary information; however, the development of a simple tool that links these approaches was hampered by their large differences in scale and complexity. Here we propose a Generically Parameterized Lake eutrophication model (GPLake) that links field-, lab- and model-based knowledge and can be used to make a first diagnosis of lake water quality. We derived GPLake from consumer-resource theory by the principle that lacustrine phytoplankton is typically limited by two resources: nutrients and light. These limitations are captured in two generic parameters that shape the nutrient to chlorophyll-a relations. Next, we parameterized GPLake, using knowledge from empirical, theoretical, and process-based approaches. GPLake generic parameters were found to scale in a comparable manner across data sources. Finally, we show that GPLake can be applied as a simple tool that provides lake managers with a first diagnosis of the limiting factor and lake water quality, using only the parameters for lake depth, residence time and current nutrient loading. With this first-order assessment, lake managers can easily assess measures such as reducing nutrient load, decreasing residence time or changing depth before spending money on field-, lab- or model- experiments to support lake management.
RESUMO
Many aquatic ecosystems have deteriorated due to human activities and their restoration is often troublesome. It is proposed here that the restoration success of deteriorated lakes critically depends on hitherto largely neglected spatial heterogeneity in nutrient loading and hydrology. A modelling approach is used to study this hypothesis by considering four lake types with contrasting nutrient loading (point versus diffuse) and hydrology (seepage versus drainage). By comparing the longterm effect of common restoration measures (nutrient load reduction, lake flushing or biomanipulation) in these four lake types, we found that restoration through reduction of nutrient loading is effective in all cases. In contrast, biomanipulation only works in seepage lakes with diffuse nutrient inputs, while lake flushing will even be counterproductive in lakes with nutrient point sources. The main conclusion of the presented analysis is that a priori assessment of spatial heterogeneity caused by nutrient loading and hydrology is essential for successful restoration of lake ecosystems.
RESUMO
Induced bank filtration (IBF) is a water abstraction technology using different natural infiltration systems for groundwater recharge, such as river banks and lake shores. It is a cost-effective pre-treatment method for drinking water production used in many regions worldwide, predominantly in urban areas. Until now, research concerning IBF has almost exclusively focussed on the purification efficiency and infiltration capacity. Consequently, knowledge about the effects on source water bodies is lacking. Yet, IBF interrupts groundwater seepage and affects processes in the sediment potentially resulting in adverse effects on lake or river water quality. Securing sufficient source water quality, however, is important for a sustainable drinking water production by IBF. In this study, we analysed the effects of five predicted mechanisms of IBF on shallow lake ecosystems using the dynamic model PCLake: declining CO2 and nutrient availability, as well as increasing summer water temperatures, sedimentation rates and oxygen penetration into sediments. Shallow lake ecosystems are abundant worldwide and characterised by the occurrence of alternative stable states with either clear water and macrophyte dominance or turbid, phytoplankton-dominated conditions. Our results show that IBF in most scenarios increased phytoplankton abundance and thus had adverse effects on shallow lake water quality. Threshold levels for critical nutrient loading inducing regime shifts from clear to turbid conditions were up to 80% lower with IBF indicating a decreased resilience to eutrophication. The effects were strongest when IBF interrupted the seepage of CO2 rich groundwater resulting in lower macrophyte growth. IBF could also enhance water quality, but only when interrupting the seepage of groundwater with high nutrient concentrations. Higher summer water temperatures increased the share of cyanobacteria in the phytoplankton community and thus the risk of toxin production. In relative terms, the effects of changing sedimentation rates and oxygen penetration were small. Lake depth and size influenced the effect of IBF on critical nutrient loads, which was strongest in shallower and smaller lakes. Our model results stress the need of a more comprehensive ecosystem perspective including an assessment of IBF effects on threshold levels for regime shifts to prevent high phytoplankton abundance in the source water body and secure a sustainable drinking water supply.
Assuntos
Água Potável , Ecossistema , Eutrofização , Lagos , FitoplânctonRESUMO
Submerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes. However, recovery patterns vary widely and remain to be fully understood. We hypothesize that reduced external nutrient loading leads to an intermediate recovery state with clear spring and turbid summer conditions similar to the pattern described for eutrophication. In contrast, lake internal restoration measures can result in transient clear-water conditions both in spring and summer and reversals to turbid conditions. Furthermore, we hypothesize that these contrasting restoration measures result in different macrophyte species composition, with added implications for seasonal dynamics due to differences in plant traits. To test these hypotheses, we analyzed data on water quality and submerged macrophytes from 49 north temperate shallow lakes that were in a turbid state and subjected to restoration measures. To study the dynamics of macrophytes during nutrient load reduction, we adapted the ecosystem model PCLake. Our survey and model simulations revealed the existence of an intermediate recovery state upon reduced external nutrient loading, characterized by spring clear-water phases and turbid summers, whereas internal lake restoration measures often resulted in clear-water conditions in spring and summer with returns to turbid conditions after some years. External and internal lake restoration measures resulted in different macrophyte communities. The intermediate recovery state following reduced nutrient loading is characterized by a few macrophyte species (mainly pondweeds) that can resist wave action allowing survival in shallow areas, germinate early in spring, have energy-rich vegetative propagules facilitating rapid initial growth and that can complete their life cycle by early summer. Later in the growing season these plants are, according to our simulations, outcompeted by periphyton, leading to late-summer phytoplankton blooms. Internal lake restoration measures often coincide with a rapid but transient colonization by hornworts, waterweeds or charophytes. Stable clear-water conditions and a diverse macrophyte flora only occurred decades after external nutrient load reduction or when measures were combined.
RESUMO
Ongoing eutrophication frequently causes toxic phytoplankton blooms. This induces huge worldwide challenges for drinking water quality, food security and public health. Of crucial importance in avoiding and reducing blooms is to determine the maximum nutrient load ecosystems can absorb, while remaining in a good ecological state. These so called critical nutrient loads for lakes depend on the shape of the load-response curve. Due to spatial variation within lakes, load-response curves and therefore critical nutrient loads could vary throughout the lake. In this study we determine spatial patterns in critical nutrient loads for Lake Taihu (China) with a novel modelling approach called Spatial Ecosystem Bifurcation Analysis (SEBA). SEBA evaluates the impact of the lake's total external nutrient load on the local lake dynamics, resulting in a map of critical nutrient loads for different locations throughout the lake. Our analysis shows that the largest part of Lake Taihu follows a nonlinear load-response curve without hysteresis. The corresponding critical nutrient loads vary within the lake and depend on management goals, i.e. the maximum allowable chlorophyll concentration. According to our model, total nutrient loads need to be more than halved to reach chlorophyll-a concentrations of 30-40 µg L-1 in most sections of the lake. To prevent phytoplankton blooms with 20 µg L-1 chlorophyll-a throughout Lake Taihu, both phosphorus and nitrogen loads need a nearly 90% reduction. We conclude that our approach is of great value to determine critical nutrient loads of lake ecosystems such as Taihu and likely of spatially heterogeneous ecosystems in general.
Assuntos
Monitoramento Ambiental , Eutrofização , Fitoplâncton , China , Lagos , FósforoRESUMO
Quantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management. Here, we focus on a large shallow lake (Lake Chaohu) located in one of the most densely populated areas in China, the lower Yangtze River floodplain, which has undergone both WLC and increasing nutrient loading over the last several decades. We applied a novel methodology that combines consistent evidence from both paleolimnological records and ecosystem modeling to overcome the hurdle of data insufficiency and to unravel the drivers and underlying mechanisms in ecosystem dynamics. We identified the occurrence of two regime shifts: one in 1963, characterized by the abrupt disappearance of submerged vegetation, and another around 1980, with strong algal blooms being observed thereafter. Using model scenarios, we further disentangled the roles of WLC and nutrient loading, showing that the 1963 shift was predominantly triggered by WLC, whereas the shift ca. 1980 was attributed to aggravated nutrient loading. Our analysis also shows interactions between these two stressors. Compared to the dynamics driven by nutrient loading alone, WLC reduced the critical P loading and resulted in earlier disappearance of submerged vegetation and emergence of algal blooms by approximately 26 and 10 years, respectively. Overall, our study reveals the significant role of hydrological regulation in driving shallow lake ecosystem dynamics, and it highlights the urgency of using multi-objective management criteria that includes ecological sustainability perspectives when implementing hydrological regulation for aquatic ecosystems around the globe.
Assuntos
Ecossistema , Eutrofização , Lagos , China , Humanos , HidrologiaRESUMO
A principal aim of ecologists is to identify critical levels of environmental change beyond which ecosystems undergo radical shifts in their functioning. Both food-web theory and alternative stable states theory provide fundamental clues to mechanisms conferring stability to natural systems. Yet, it is unclear how the concept of food-web stability is associated with the resilience of ecosystems susceptible to regime change. Here, we use a combination of food web and ecosystem modelling to show that impending catastrophic shifts in shallow lakes are preceded by a destabilizing reorganization of interaction strengths in the aquatic food web. Analysis of the intricate web of trophic interactions reveals that only few key interactions, involving zooplankton, diatoms and detritus, dictate the deterioration of food-web stability. Our study exposes a tight link between food-web dynamics and the dynamics of the whole ecosystem, implying that trophic organization may serve as an empirical indicator of ecosystem resilience.
Assuntos
Ecossistema , Cadeia Alimentar , Lagos , Animais , Diatomáceas , Hidrobiologia , Modelos Biológicos , Dinâmica Populacional , ZooplânctonRESUMO
Complex ecological models are used to predict the consequences of anticipated future changes in climate and nutrient loading for lake water quality. These models may, however, suffer from nonuniqueness in that various sets of model parameter values may yield equally satisfactory representations of the system being modeled, but when applied in future scenarios these sets of values may divert considerably in their simulated outcomes. Compilation of an ensemble of model runs allows us to account for simulation variability arising from model parameter estimates. Thus, we propose a new approach for aquatic ecological models creating a more robust prediction of future water quality. We used our ensemble approach in an application of the widely used PCLake model for Danish shallow Lake Arreskov, which during the past two decades has demonstrated frequent shifts between turbid and clear water states. Despite marked variability, the span of our ensemble runs encapsulated 7090% of the observed variation in lake water quality. The model exercise demonstrates that future warming and increased nutrient loading lead to lower probability of a clear water, vegetation-rich state and greater likelihood of cyanobacteria dominance. In a 6.0°C warming scenario, for instance, the current nutrient loading of nitrogen and phosphorus must be reduced by about 75% to maintain the present ecological state of Lake Arreskov, but even in a near-future 2.0°C warming scenario, a higher probability of a turbid, cyanobacteria-dominated state is predicted. As managers may wish to determine the probability of achieving a certain ecological state, our proposed ensemble approach facilitates new ways of communicating future stressor impacts.
Assuntos
Mudança Climática , Ecossistema , Lagos/química , Modelos Teóricos , Rios/química , Poluentes Químicos da Água/química , Animais , Simulação por Computador , Conservação dos Recursos Naturais , Dinamarca , Monitoramento Ambiental , Peixes/fisiologia , Plantas , Temperatura , Fatores de Tempo , Qualidade da ÁguaRESUMO
Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic conversions.
Assuntos
Áreas Alagadas , Internacionalidade , Análise de RegressãoRESUMO
Lake Victoria in East Africa is the world's second largest freshwater system. Over the past century the ecosystem has undergone drastic changes. Some 30 years after the introduction of Nile perch (Lates niloticus) and Nile tilapia (Oreochromis niloticus) in the 1950s, the highly diverse community of native haplochromines collapsed, leaving a system dominated by only four species: the native cyprinid dagaa (Rastrineobola argentea) and shrimp (Caridina nilotica), as well as the introduced Nile perch and Nile tilapia. More recently, an unexpected resurgence of haplochromines has been reported. To understand these changes in terms of ecosystem functioning and of changes in growth of trophic groups, we created mass balances of the food web near Mwanza, Tanzania, before, during, and after the Nile perch boom (1977, 1987, and 2005), using the application ECOPATH. We connected these mass balances with a dynamic model assuming linear trends in net growth rates of the trophic groups. Our analysis suggests that the Nile perch boom initially altered the biomass distribution over trophic levels. Also, results indicate that not only fishing but also changes at the detritivores' trophic level might have played an important role in driving changes in the system. Both the mass balances and the dynamic model connecting them reveal that, after a major distortion during the Nile perch boom, the biomass distribution over the main trophic levels had largely recovered its original (1977) state by 2005. However, no such return appeared in terms of community structure. Biodiversity in the new state is dramatically lower, consisting of introduced species and a few native surviving species. We conclude that at an aggregate level Lake Victoria's ecosystem has proved to be resilient in the sense that its overall trophic structure has apparently recovered after a major perturbation. By contrast, its intricate functional structure and associated biodiversity have proved to be fragile and seem unlikely to recover.
Assuntos
Decápodes/fisiologia , Peixes/fisiologia , Cadeia Alimentar , Lagos , Animais , Monitoramento Ambiental , Tanzânia , Fatores de TempoRESUMO
Many lakes have experienced a transition from a clear into a turbid state without macrophyte growth due to eutrophication. There are several measures by which nitrogen (N) and phosphorus (P) concentrations in the surface water can be reduced. We used the shallow lake model PCLake to evaluate the effects of three measures (reducing external nutrient loading, increasing relative marsh area, and increasing exchange rate between open water and marsh) on water quality improvement. Furthermore, the contribution of different retention processes was calculated. Settling and burial contributed more to nutrient retention than denitrification. The model runs for a typical shallow lake in The Netherlands showed that after increasing relative marsh area to 50%, total phosphorous (TP) concentration in the surface water was lower than the Maximum Admissible Risk (MAR, a Dutch government water quality standard) level, in contrast to total nitrogen (TN) concentration. The MAR levels could also be achieved by reducing N and P load. However, reduction of nutrient concentrations to MAR levels did not result in a clear lake state with submerged vegetation. Only a combination of a more drastic reduction of the present nutrient loading, in combination with a relatively large marsh cover (approximately 50%) would lead to such a clear state. We therefore concluded that littoral marsh areas can make a small but significant contribution to lake recovery.
Assuntos
Eutrofização , Modelos Biológicos , Nitrogênio/análise , Fósforo/análise , Poluentes da Água/análise , Abastecimento de Água/normas , Animais , Ecossistema , Monitoramento Ambiental , Água Doce/análise , Água Doce/química , Sedimentos Geológicos/química , Nefelometria e Turbidimetria , Países Baixos , Nitrogênio/efeitos adversos , Fósforo/efeitos adversos , Desenvolvimento Vegetal , Poluentes da Água/efeitos adversosRESUMO
A microcosm experiment that addressed the interaction between eutrophication processes and contaminants was analyzed using a food web model. Both direct and indirect effects of nutrient additions and a single insecticide application (chlorpyrifos) on biomass dynamics and recovery of functional groups were modeled. Direct toxicant effects on sensitive arthropods could be predicted reasonably well using concentration-response relationships from the laboratory with representative species. Model predictions showed that nutrient additions alone caused only small effects on toxicant fate and effects probably due to the relatively high dissipation rate of chlorpyrifos. Enhancement of eutrophication effects by the insecticide was relatively small and seemed to be additive. The recovery of some affected functional groups was hampered in the indoor microcosms due to their isolation from outdoor seed populations. Introducing recolonization scenarios in the model simulated dose-dependent recovery. Recolonization increased the recovering rate after exposure to the pesticide. Modeling can extend the use of microcosms as a link between laboratory and field as this allows the prediction of effects and recovery of ecosystems for concentrations that have not been experimentally tested.