Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 306, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825717

RESUMO

Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.


Assuntos
Actínio , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Actínio/química , Humanos , Linhagem Celular Tumoral , Animais , Partículas alfa/uso terapêutico , Camundongos , Feminino , Materiais Biocompatíveis/química , Neoplasias da Mama/tratamento farmacológico , Radioimunoterapia/métodos
2.
Sci Rep ; 14(1): 11301, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760382

RESUMO

Understanding lanthanide coordination chemistry can help develop new ligands for more efficient separation of lanthanides for critical materials needs. The Cambridge Structural Database (CSD) contains tens of thousands of single crystal structures of lanthanide complexes that can serve as a training ground for both fundamental chemical insights and future machine learning and generative artificial intelligence models. This work aims to understand the currently available structures of lanthanide complexes in CSD by analyzing the coordination shell, donor types, and ligand types, from the perspective of rare-earth element (REE) separations. We obtain four sets of lanthanide complexes from CSD: Subset 1, all Ln-containing complexes (49472 structures); Subset 2, mononuclear Ln complexes (27858 structures); Subset 3, mononuclear Ln complexes without cyclopentadienyl ligands (Cp) (26156 structures); Subset 4, Ln complexes with at least one 1,10-phenanthroline (phen) or its derivative as a coordinating ligand (2226 structures). The subsequent analysis of lanthanide complexes in these subsets examines the trends in coordination numbers and first shell distances as well as identifies and characterizes the ligands and donor groups. In addition, examples of Ln-complexes with commercially available complexants and phen-based ligands are interrogated in detail. This systematic investigation lays the groundwork for future data-driven ligand designs for REE separations based on the structural insights into the lanthanide coordination chemistry.

3.
Nature ; 629(8013): 819-823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38778232

RESUMO

Lanthanide rare-earth metals are ubiquitous in modern technologies1-5, but we know little about chemistry of the 61st element, promethium (Pm)6, a lanthanide that is highly radioactive and inaccessible. Despite its importance7,8, Pm has been conspicuously absent from the experimental studies of lanthanides, impeding our full comprehension of the so-called lanthanide contraction phenomenon: a fundamental aspect of the periodic table that is quoted in general chemistry textbooks. Here we demonstrate a stable chelation of the 147Pm radionuclide (half-life of 2.62 years) in aqueous solution by the newly synthesized organic diglycolamide ligand. The resulting homoleptic PmIII complex is studied using synchrotron X-ray absorption spectroscopy and quantum chemical calculations to establish the coordination structure and a bond distance of promethium. These fundamental insights allow a complete structural investigation of a full set of isostructural lanthanide complexes, ultimately capturing the lanthanide contraction in solution solely on the basis of experimental observations. Our results show accelerated shortening of bonds at the beginning of the lanthanide series, which can be correlated to the separation trends shown by diglycolamides9-11. The characterization of the radioactive PmIII complex in an aqueous environment deepens our understanding of intra-lanthanide behaviour12-15 and the chemistry and separation of the f-block elements16.

4.
Sci Rep ; 13(1): 17855, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857726

RESUMO

The complexation of trivalent lanthanides and minor actinides (Am3+, Cm3+, and Cf3+) by the acyclic aminopolycarboxylate chelators 6,6'-((ethane-1,2-diylbis-((carboxymethyl)azanediyl))bis-(methylene))dipicolinic acid (H4octapa) and 6,6'-((((4-(1-(2-(2-(2-hydroxyethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)pyridine-2,6-diyl)bis-(methylene))bis-((carboxymethyl)azanediyl))bis-(methylene)) dipicolinic acid (H4pypa-peg) were studied using potentiometry, spectroscopy, competitive complexation liquid-liquid extraction, and ab initio molecular dynamics simulations. Two studied reagents are strong multidentate chelators, well-suited for applications seeking radiometal coordination for in-vivo delivery and f-element isolation. The previously reported H4octapa forms a compact coordination packet, while H4pypa-peg is less sterically constrained due to the presence of central pyridine ring. The solubility of H4octapa is limited in a non-complexing high ionic strength perchlorate media. However, the introduction of a polyethylene glycol group in H4pypa-peg increased the solubility without influencing its ability to complex the lanthanides and minor actinides in solution.

5.
JACS Au ; 3(2): 584-591, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36873676

RESUMO

Separating rare earth elements is a daunting task due to their similar properties. We report a "tug of war" strategy that employs a lipophilic and hydrophilic ligand with contrasting selectivity, resulting in a magnified separation of target rare earth elements. Specifically, a novel water-soluble bis-lactam-1,10-phenanthroline with an affinity for light lanthanides is coupled with oil-soluble diglycolamide that selectively binds heavy lanthanides. This two-ligand strategy yields a quantitative separation of the lightest (e.g., La-Nd) and heaviest (e.g., Ho-Lu) lanthanides, enabling efficient separation of neighboring lanthanides in-between (e.g., Sm-Dy).

6.
RSC Adv ; 13(2): 764-769, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36686929

RESUMO

Preorganized ligands such as bis-lactam-1,10-phenanthroline (BLPhen) show unique selectivity trends across the lanthanide series, indicating the synergistic effects of both N and O donors in complexing with lanthanides. We hypothesize that by replacing amide functional groups with an N-oxide functionality would open the door to new ligand architectures with improved selectivities. To test this idea, we computationally examined mixed N,O-donor ligands containing pyridinic N and N-oxide groups and evaluated their relative aqueous La(iii)/Ln(iii) selectivity by computing free energy changes for the exchange reaction between the designed ligands and a reference ligand. Three novel ligands show promise as excellent extractant agents in selectively separating trivalent lanthanides. The extent of conjugation (and hyperconjugation), the complex geometry, and the electron accumulations on the two O-donors of the N-oxide groups are found to be important factors in dictating the selectivity trends.

7.
J Phys Chem Lett ; 13(51): 12076-12081, 2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36546660

RESUMO

The role of counterions in molecular recognition of lanthanides is underexplored, especially when they exhibit weak interactions with the metal cations. Here, we report a complementary and comprehensive investigation integrating theoretical calculations with X-ray absorption fine structure spectroscopy, dynamic light scattering, and small-angle X-ray scattering to reveal atomic-scale structural features beyond the immediate coordination sphere of a system used for rare-earth element separations. Our results indicate the formation of an unusual T-shaped outer-sphere lanthanide complex, containing two ligands and two nitrate ions in the first coordination sphere, whereas the third nitrate is weakly coordinated and resides in the second shell. This unique structural arrangement causes inhomogeneous charge distribution, leading to self-assembly of the complexes into larger nanoclusters through sterically directed electrostatic interactions in the nonpolar medium. Our findings point to the importance of "noncoordinating" anions in defining the degree of supramolecular aggregation and ion cluster assembly.

8.
ACS Omega ; 7(24): 21317-21324, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35935293

RESUMO

Rare-earth elements (REEs) such as neodymium are critical materials needed in many important technologies, and rigid neutral bis-lactam-1,10-phenanthroline (BLPhen) ligands show one of the highest extraction performance for complexing Nd(III) in REE uptake and separation processes. However, the local structure of the complexes formed between BLPhen and Nd(III) in a typical organic solvent such as dichloroethane (DCE) is unclear. Here, we perform first-principles molecular dynamics (FPMD) simulations to unveil the structure of complexes formed by BLPhen with Nd(NO3)3 in the DCE solvent. BLPhen can bind to Nd(III) in either 1:1 or 2:1 fashion. In the 1:1 complex, three nitrates bind to Nd(III) via the bidentate mode in the first solvation shell, leading to the formation of a neutral complex, [Nd(BLPhen)(NO3)3]0, in the organic phase. In contrast, there are two nitrates in the first solvation shell in the 2:1 complex, creating a charged complex, [Nd(BLPhen)2(NO3)2]+. The third nitrate was found to be far away from the metal center, migrating to the outer solvation shell. Our simulations show that the binding pocket formed by the two rigid BLPhen ligands allows ample space for two nitrates to bind to the Nd(III) center from opposite sides. Our findings of two nitrates in the first solvation shell of the 2:1 complex and the corresponding bond distances agree well with the available crystal structure. This study represents the first accurate FPMD modeling of the BLPhen-Nd(III) complexes in an explicit organic solvent and opens the door to more atomistic understanding of REE separations from first principles.

9.
JACS Au ; 2(6): 1428-1434, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35783179

RESUMO

Constituting the bulk of rare-earth elements, lanthanides need to be separated to fully realize their potential as critical materials in many important technologies. The discovery of new ligands for improving rare-earth separations by solvent extraction, the most practical rare-earth separation process, is still largely based on trial and error, a low-throughput and inefficient approach. A predictive model that allows high-throughput screening of ligands is needed to identify suitable ligands to achieve enhanced separation performance. Here, we show that deep neural networks, trained on the available experimental data, can be used to predict accurate distribution coefficients for solvent extraction of lanthanide ions, thereby opening the door to high-throughput screening of ligands for rare-earth separations. One innovative approach that we employed is a combined representation of ligands with both molecular physicochemical descriptors and atomic extended-connectivity fingerprints, which greatly boosts the accuracy of the trained model. More importantly, we synthesized four new ligands and found that the predicted distribution coefficients from our trained machine-learning model match well with the measured values. Therefore, our machine-learning approach paves the way for accelerating the discovery of new ligands for rare-earth separations.

10.
Langmuir ; 38(18): 5439-5453, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35443130

RESUMO

Enhancing the separation of rare-earth elements (REEs) from gangue materials in mined ores requires an understanding of the fundamental interactions driving the adsorption of collector ligands onto mineral interfaces. In this work, we examine five functionalized hydroxamic acid ligands as potential collectors for the REE-containing bastnäsite mineral in froth flotation using density functional theory calculations and a suite of surface-sensitive analytical spectroscopies. These include vibrational sum frequency generation, attenuated total reflectance Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies. Differences in the chemical makeup of these ligands on well-defined bastnäsite and calcite surfaces allow for a systematic relationship connecting the structure to adsorption activity to be framed in the context of interfacial molecular recognition. We show how the intramolecular hydrogen bonding of adsorbed ligands requires the inclusion of explicit water solvent molecules to correctly map energetic and structural trends measured by experiments. We anticipate that the results and insights from this work will motivate and inform the design of improved flotation collectors for REE ores.

11.
J Hazard Mater ; 427: 128167, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-34979388

RESUMO

Hexavalent Cr(VI) found in industrial wastewater is a proven carcinogen which causes serious health issues in humans around the world. This study presents a novel method to enhance the Cr(VI) oxyanion removal from wastewater by polyacrylonitrile (PAN) nanofibers through incorporation of a guanidinium-based ionic covalent organic framework (BT-DG) in the nanofibers structure. Simple electrospinning technique was employed to produce PAN nanofibers and BT-DG was synthesized through condensation between benzene-1,3,5-tricarbaldehyde and N,N'-diaminoguanidine monohydrochloride. In-situ polymerization of BT-DG onto PAN nanofibers resulted in generation of hybrid PAN-BT-DG nanofibers. This modified PAN-BT-DG was characterized by obtaining its point of zero charge (PZC), differential scanning calorimeter (DSC), scanning electron microscopy (SEM) morphology and surface elements and oxidation states by X-ray photoelectron spectroscopy (XPS). PAN-BT-DG exhibited positive surface charge below pH 4, making it an outstanding adsorbent, for Cr(VI) removal. Cr(VI) adsorption onto PAN-BT-DG followed pseudo second order kinetics and adsorption data fitted well to Freundlich isotherm model. Highest Cr(VI) removal was obtained at 55 â„ƒ with a maximum Langmuir adsorption capacity of 173 mg/g at pH 3. Kinetic studies revealed that Cr(VI) adsorption onto PAN-BT-DG is endothermic and thermodynamically feasible. Desorption studies were conducted on PAN-BT-DG using 1 M NaOH as the stripping solvent and PAN-BT-DG exhibited excellent regeneration after five consecutive cycles.


Assuntos
Estruturas Metalorgânicas , Nanofibras , Poluentes Químicos da Água , Purificação da Água , Resinas Acrílicas , Adsorção , Cromo/análise , Humanos , Concentração de Íons de Hidrogênio , Cinética , Água , Poluentes Químicos da Água/análise
12.
Small ; 17(46): e2104703, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34677905

RESUMO

Chromium (VI) and arsenic (V) oxoanions are major toxic heavy metal pollutants in water threatening both human health and environmental safety. Herein, the development is reported of a bifunctional ionic covalent organic network (iCON) with integrated guanidinium and phenol units to simultaneously sequester chromate and arsenate in water via a synergistic ion-exchange-redox process. The guanidinium groups facilitate the ion-exchange-based adsorption of chromate and arsenate at neutral pH with fast kinetics and high uptake capacity, whereas the integrated phenol motifs mediate the Cr(VI)/Cr(III) redox process that immobilizes chromate and promotes the adsorption of arsenate via the formation of Cr(III)-As(V) cluster/complex. The synergistic ion-exchange-redox approach not only pushes high adsorption efficiency for both chromate and arsenate but also upholds a balanced Cr/As uptake ratio regardless of the change in concentration and the presence of interfering oxoanions.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Cromo , Humanos , Concentração de Íons de Hidrogênio , Troca Iônica , Oxirredução
13.
J Phys Chem B ; 125(30): 8532-8538, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34292733

RESUMO

Preorganized ligands with imidazolium arms have been found to be highly selective in extracting Am(III) into ionic liquids (ILs), but the detailed structure and mechanism of the complexation process in the ionic solvation environment are unclear. Here, we carry out molecular dynamics simulation of the complexation of Am(III) with a preorganized 1,10-phenanthroline-2,9-dicarboxamide complexant (L) functionalized with alkyl chains and imidazolium cations in the butylmethylimidazolium bistriflimide ([BMIM][NTf2]) IL. Both Am:L (1:1) and Am:L2 (1:2) complexes are examined. In the absence of the ligand, Am(III) is found to be coordinated by six NTf2 anions via nine O donors in the first solvation shell. In the Am:L complex, Am(III) is coordinated to the ligand via two O donors and four NTf2 anions via seven O donors in the first coordination shell. In the Am:L2 complex, Am(III) is coordinated to the two ligands via four O donors and four NTf2 anions via five O donors. The imidazolium arms of the ligands play an important role in the secondary solvation environment by attracting NTf2 anions closer to the metal center. As a result, we find that the binding free energy for the second L2+ ligand is twice that for the first L2+ ligand, making the Am:L2 complex significantly more stable than the Am:L complex. This work highlights the multiple factors and tunability in using preorganized ligands with charged functional groups in an ionic solvation environment, which could hold the key to achieving desired selectivity in ion extraction efficiency.


Assuntos
Líquidos Iônicos , Cátions , Ligantes , Simulação de Dinâmica Molecular , Termodinâmica
14.
Inorg Chem ; 59(23): 17620-17630, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33186015

RESUMO

The separation of adjacent lanthanides continues to be a challenge worldwide because of the similar physical and chemical properties of these elements and a necessity to advance the use of clean-energy applications. Herein, a systematic structure-performance relationship approach toward understanding the effect of N-alkyl group characteristics in diglycolamides (DGAs) on the separation of lanthanides(III) from a hydrochloric acid medium is presented. In addition to the three most extensively studied DGA complexants [N,N,N',N'-tetra(n-octyl)diglycolamide, TODGA; N,N,N',N'-tetra(2-ethylhexyl)diglycolamide, TEHDGA; N,N'-dimethyl-N,N'-di(n-octyl)diglycolamide, DMDODGA], 12 new extracting agents with varying substitution patterns were designed to study the interplay of steric and electronic effects that control rare-earth element extraction. Subtle changes in the structure around diglycolamide carbonyl oxygen atoms result in dramatic shifts in the lanthanide extraction strength and selectivity. The effects of the chain length and branching position of N-alkyl substituents in DGAs are elaborated on with the use of experimental, computational, and solution-structure characterization techniques.

15.
iScience ; 23(9): 101435, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32827853

RESUMO

Separating rare-earth-element-rich minerals from unwanted gangue in mined ores relies on selective binding of collector molecules at the interface to facilitate froth flotation. Salicylhydroxamic acid (SHA) exhibits enhanced selectivity for bastnäsite over calcite in microflotation experiments. Through a multifaceted approach, leveraging density functional theory calculations, and advanced spectroscopic methods, we provide molecular-level mechanistic insight to this selectivity. The hydroxamic acid moiety introduces strong interactions at metal-atom surface sites and hinders subsurface-cation stabilization at vacancy-defect sites, in calcite especially. Resulting from hydrogen-bond-induced interactions, SHA lies flat on the bastnäsite surface and shows a tendency for multilayer formation at high coverages. In this conformation, SHA complexation with bastnäsite metal ions is stabilized, leading to advanced flotation performance. In contrast, SHA lies perpendicular to the calcite surface due to a difference in cationic spacing. We anticipate that these insights will motivate rational design and selection of future collector molecules for enhanced ore beneficiation.

16.
Chemistry ; 26(63): 14290-14294, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32790908

RESUMO

Cooperativity effects among the interconnected anion and cation binding sites can profoundly alter the performance of heteroditopic receptors in selective ion pair recognition, processes that are oftentimes pertinent to biological systems and chemical separations. This work reports the effect of the linker that connects both binding sites on self-assembly of heteroditopic receptors in the presence of divalent first-row transition metal salts in solution and solid phase. Introduction of backbone flexibility in the receptor results in the formation of triple-stranded ion-pair helicates with an extraordinary selectivity towards CuSO4 through an anion-induced fit.

17.
ACS Appl Mater Interfaces ; 12(14): 16327-16341, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32180402

RESUMO

Ce-bastnäsite is the single largest mineral source for light rare-earth elements. In view of the growing industrial importance of rare-earth minerals, it is critical to develop more efficient methods for separating the valuable rare-earth-containing minerals from the surrounding gangue. In this work, we employ a combination of periodic density functional theory (DFT) and molecular mechanics (MM) calculations together with the de novo molecular design program HostDesigner to identify bis-phosphinate ligands that preferentially bind to the (100) Ce-bastnäsite surface rather than the (104) calcite surface. DFT calculations for a simple phosphinate ligand were employed to qualitatively understand key behaviors involved in ligand-metal, ligand-solvent, and solvent-metal interactions. These insights were then used to guide the search for flexible, rigid, and semirigid hydrocarbon linkers to identify candidate bis-phosphinate ligands with the potential to bind preferentially to Ce-bastnäsite. Among the five most promising bis-phosphinate ligands suggested by theoretical studies, three ligands were synthesized and their adsorption characteristics to bastnäsite (100) interfaces were characterized using vibrational sum-frequency (vSFG) spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and isothermal titration calorimetry (ITC). The efficacy of the selective interfacial molecular binding was demonstrated by identifying a bis-phosphinate ligand capable of providing an overall higher surface coverage of alkyl groups relative to a monophosphinate ligand. The results highlight the interplay between adsorption binding strength and maximum surface coverage in determining ligand efficiency to render the mineral surface hydrophobic. DFT calculations further indicate that all tested ligands have higher affinity for Ce-bastnäsite than for calcite. This is consistent with the ITC data showing stronger adsorption enthalpy to bastnäsite than to calcite, making these ligands promising candidates for selective flotation of Ce-bastnäsite.

18.
Inorg Chem ; 59(1): 138-150, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31430129

RESUMO

The trivalent f-element coordination chemistry of a novel aminopolycarboxylate complexant was investigated. The novel reagent is an octadentate complexant that resembles diethylenetriamine-N,N,N',N″,N″-pentaacetic acid (DTPA), but a single N-acetate pendant arm was substituted with a N-2-pyrazinylmethyl functional group. Thermodynamic studies of ligand protonation and trivalent lanthanide, americium and curium, complexation by N-2-pyrazinylmethyldiethylenetriamine-N,N',N″,N″-tetraacetic acid (DTTA-PzM) emphasize the strong electron withdrawing influence of the N-2-pyrazinylmethyl group. Specifically, DTTA-PzM is more acidic compared to a N-2-pyridinylmethyl-substituted structural equivalent, DTTA-PyM, with a substantial lowering of pK7, corresponding to the protonation of a second aliphatic amine site. The participation of the pyrizyl nitrogen in the metal ion coordination sphere is evident from the fluorescence lifetime decay measurements of metal hydration and the interpretation of the stability constants for ML- and MHL(aq) complexes. The overall conditional stability constants for the trivalent f-element complexation by DTTA-PzM complexes decrease, relative to DTTA-PyM, as expected based on the lower basicity of pyrazine in water relative to pyridine. Replacement of the N-2-pyridinylmethyl group with N-2-pyrazinylmethyl, while enhancing the total acidity of DTTA-PzM, also reduces its softness, as manifested by a small lowering of ß101Am/Nd and liquid-liquid separation of trivalent lanthanides from trivalent americium. Despite this, the 4f/5f separation is doubled when DTTA-PzM replaces DTPA as an aqueous complexant in solvent extraction.

19.
J Colloid Interface Sci ; 553: 210-219, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31203005

RESUMO

Rare earth element (REE) production is limited in part by inefficient strategies for beneficiation. Hydroxamic acid ligands are promising reagents for the selective flotation of bastnäsite [(Ce,La)FCO3], a major REE ore mineral, but the mechanism and energetics of adsorption are not understood, interfering with the design of new, more efficient reagents. Here, the adsorption of octyl hydroxamic acid onto bastnäsite was measured using a combination of experimental and computational methods. In-situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy revealed changes in the hydroxamate functional group vibrational frequencies, corresponding to chelation with cerium cations at the bastnäsite surface. The results indicate a monodentate chemisorption mechanism at low surface loading that changes to bidentate chemisorption at higher concentrations. This interpretation is supported by molecular vibrational frequency shifts calculated using density functional theory (DFT), and orientation of the hydrocarbon chain measured by sum frequency generation (SFG) vibrational spectroscopy. The binding enthalpies of octyl hydroxamic acid interacting with La and Ce-bastnäsite surfaces were measured using isothermal titration calorimetry (ITC) revealing a stronger coordinating ability with bastnäsite than with a common gangue mineral, calcite (CaCO3). Because octyl hydroxamate favors monodentate adsorption at low surface coverages, the relative chelating strength of metal ions could be a poor predictor for selectivity under monolayer adsorption conditions. At higher surface loadings, where the bidentate mode of adsorption is active, selectivity is likely to be limited by increased flotation of gangue ores.

20.
Chemistry ; 25(25): 6326-6331, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30803070

RESUMO

Due to the ever-increasing demand for high-purity individual rare-earth elements, novel and highly selective separation processes are increasingly sought after. Herein, we report a separation protocol that employs shape-persistent 2,9-bis-lactam-1,10-phenanthroline (BLPhen) ligands exhibiting unparalleled selectivity for light trivalent lanthanides. The highly preorganised binding pockets of the ligands allowed for the separation of lanthanides with high fidelity, even in the presence of competing transition metals, in a biphasic separation system. Notably, the selectivity trends of the BLPhen ligands towards metal ions across the lanthanide series can be chemically modulated by altering the molecular rigidity of the extractant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA