Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 615(7953): 652-659, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890232

RESUMO

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Assuntos
Produtos Agrícolas , Diploide , Variação Genética , Genoma de Planta , Genômica , Melhoramento Vegetal , Proteínas de Plantas , Vicia faba , Cromossomos de Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Variações do Número de Cópias de DNA/genética , DNA Satélite/genética , Amplificação de Genes/genética , Genes de Plantas/genética , Variação Genética/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Geografia , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Recombinação Genética , Retroelementos/genética , Sementes/anatomia & histologia , Sementes/genética , Vicia faba/anatomia & histologia , Vicia faba/genética , Vicia faba/metabolismo
2.
Genet Sel Evol ; 52(1): 31, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527317

RESUMO

BACKGROUND: The traditional way to estimate variance components (VC) is based on the animal model using a pedigree-based relationship matrix (A) (A-AM). After genomic selection was introduced into breeding programs, it was anticipated that VC estimates from A-AM would be biased because the effect of selection based on genomic information is not captured. The single-step method (H-AM), which uses an H matrix as (co)variance matrix, can be used as an alternative to estimate VC. Here, we compared VC estimates from A-AM and H-AM and investigated the effect of genomic selection, genotyping strategy and genotyping proportion on the estimation of VC from the two methods, by analyzing a dataset from a commercial broiler line and a simulated dataset that mimicked the broiler population. RESULTS: VC estimates from H-AM were severely overestimated with a high proportion of selective genotyping, and overestimation increased as proportion of genotyping increased in the analysis of both commercial and simulated data. This bias in H-AM estimates arises when selective genotyping is used to construct the H-matrix, regardless of whether selective genotyping is applied or not in the selection process. For simulated populations under genomic selection, estimates of genetic variance from A-AM were also significantly overestimated when the effect of genomic selection was strong. Our results suggest that VC estimates from H-AM under random genotyping have the expected values. Predicted breeding values from H-AM were inflated when VC estimates were biased, and inflation differed between genotyped and ungenotyped animals, which can lead to suboptimal selection decisions. CONCLUSIONS: We conclude that VC estimates from H-AM are biased with selective genotyping, but are close to expected values with random genotyping.VC estimates from A-AM in populations under genomic selection are also biased but to a much lesser degree. Therefore, we recommend the use of H-AM with random genotyping to estimate VC for populations under genomic selection. Our results indicate that it is still possible to use selective genotyping in selection, but then VC estimation should avoid the use of genotypes from one side only of the distribution of phenotypes. Hence, a dual genotyping strategy may be needed to address both selection and VC estimation.


Assuntos
Cruzamento/métodos , Técnicas de Genotipagem/métodos , Seleção Genética/genética , Análise de Variância , Animais , Galinhas/genética , Simulação por Computador , Genoma/genética , Genômica/métodos , Genótipo , Modelos Animais , Modelos Genéticos , Linhagem , Fenótipo
3.
Sci Rep ; 10(1): 8205, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32398811

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Sci Rep ; 10(1): 3347, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099054

RESUMO

Genome-wide association study (GWAS) and genomic prediction (GP) are extensively employed to accelerate genetic gain and identify QTL in plant breeding. In this study, 1,317 spring barley and 1,325 winter wheat breeding lines from a commercial breeding program were genotyped with the Illumina 9 K barley or 15 K wheat SNP-chip, and phenotyped in multiple years and locations. For GWAS, in spring barley, a QTL on chr. 4H associated with powdery mildew and ramularia resistance were found. There were several SNPs on chr. 4H showing genome-wide significance with yield traits. In winter wheat, GWAS identified two SNPs on chr. 6A, and one SNP on chr. 1B, significantly associated with quality trait moisture, as well as one SNP located on chr. 5B associated with starch content in the seeds. The significant SNPs identified by multiple trait GWAS were generally the same as those found in single trait GWAS. GWAS including genotype-location information in the model identified significant SNPs in each tested location, which were not found previously when including all locations in the GWAS. For GP, in spring barley, GP using the Bayesian Power Lasso model had higher accuracy than ridge regression BLUP in powdery mildew and yield traits, whereas the prediction accuracies were similar using Bayesian Power Lasso model and rrBLUP for yield traits in winter wheat.


Assuntos
Hordeum/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Triticum/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Teorema de Bayes , Cruzamento , Resistência à Doença/genética , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genômica , Genótipo , Hordeum/crescimento & desenvolvimento , Hordeum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único/genética , Estações do Ano , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
5.
Front Plant Sci ; 9: 69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456546

RESUMO

The aim of the this study was to identify SNP markers associated with five important wheat quality traits (grain protein content, Zeleny sedimentation, test weight, thousand-kernel weight, and falling number), and to investigate the predictive abilities of GBLUP and Bayesian Power Lasso models for genomic prediction of these traits. In total, 635 winter wheat lines from two breeding cycles in the Danish plant breeding company Nordic Seed A/S were phenotyped for the quality traits and genotyped for 10,802 SNPs. GWAS were performed using single marker regression and Bayesian Power Lasso models. SNPs with large effects on Zeleny sedimentation were found on chromosome 1B, 1D, and 5D. However, GWAS failed to identify single SNPs with significant effects on the other traits, indicating that these traits were controlled by many QTL with small effects. The predictive abilities of the models for genomic prediction were studied using different cross-validation strategies. Leave-One-Out cross-validations resulted in correlations between observed phenotypes corrected for fixed effects and genomic estimated breeding values of 0.50 for grain protein content, 0.66 for thousand-kernel weight, 0.70 for falling number, 0.71 for test weight, and 0.79 for Zeleny sedimentation. Alternative cross-validations showed that the genetic relationship between lines in training and validation sets had a bigger impact on predictive abilities than the number of lines included in the training set. Using Bayesian Power Lasso instead of GBLUP models, gave similar or slightly higher predictive abilities. Genomic prediction based on all SNPs was more effective than prediction based on few associated SNPs.

6.
PLoS One ; 12(1): e0169606, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081208

RESUMO

Wheat breeding programs generate a large amount of variation which cannot be completely explored because of limited phenotyping throughput. Genomic prediction (GP) has been proposed as a new tool which provides breeding values estimations without the need of phenotyping all the material produced but only a subset of it named training population (TP). However, genotyping of all the accessions under analysis is needed and, therefore, optimizing TP dimension and genotyping strategy is pivotal to implement GP in commercial breeding schemes. Here, we explored the optimum TP size and we integrated pedigree records and genome wide association studies (GWAS) results to optimize the genotyping strategy. A total of 988 advanced wheat breeding lines were genotyped with the Illumina 15K SNPs wheat chip and phenotyped across several years and locations for yield, lodging, and starch content. Cross-validation using the largest possible TP size and all the SNPs available after editing (~11k), yielded predictive abilities (rGP) ranging between 0.5-0.6. In order to explore the Training population size, rGP were computed using progressively smaller TP. These exercises showed that TP of around 700 lines were enough to yield the highest observed rGP. Moreover, rGP were calculated by randomly reducing the SNPs number. This showed that around 1K markers were enough to reach the highest observed rGP. GWAS was used to identify markers associated with the traits analyzed. A GWAS-based selection of SNPs resulted in increased rGP when compared with random selection and few hundreds SNPs were sufficient to obtain the highest observed rGP. For each of these scenarios, advantages of adding the pedigree information were shown. Our results indicate that moderate TP sizes were enough to yield high rGP and that pedigree information and GWAS results can be used to greatly optimize the genotyping strategy.


Assuntos
Genoma de Planta , Técnicas de Genotipagem/métodos , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/genética , Estudo de Associação Genômica Ampla
7.
Theor Appl Genet ; 129(1): 45-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26407618

RESUMO

KEYMESSAGE: By using the genotyping-by-sequencing method, it is feasible to characterize genomic relationships directly at the level of family pools and to estimate genomic heritabilities from phenotypes scored on family-pools in outbreeding species. Genotyping-by-sequencing (GBS) has recently become a promising approach for characterizing plant genetic diversity on a genome-wide scale. We use GBS to extend the concept of heritability beyond individuals by genotyping family-pool samples by GBS and computing genomic relationship matrices (GRMs) and genomic heritabilities directly at the level of family-pools from pool-frequencies obtained by sequencing. The concept is of interest for species where breeding and phenotyping is not done at the individual level but operates uniquely at the level of (multi-parent) families. As an example we demonstrate the approach using a set of 990 two-parent F2 families of perennial ryegrass (Lolium Perenne). The families were phenotyped as a family-unit in field plots for heading date and crown rust resistance. A total of 728 K single nucleotide polymorphism (SNP) variants were available and were divided in groups of different sequencing depths. GRMs based on GBS data showed diagonal values biased upwards at low sequencing depth, while off-diagonals were little affected by the sequencing depth. Using variants with high sequencing depth, genomic heritability for crown rust resistance was 0.33, and for heading date 0.22, and these genomic heritabilities were biased downwards when using variants with lower sequencing depth. Broad sense heritabilities were 0.61 and 0.66, respectively. Underestimation of genomic heritability at lower sequencing depth was confirmed with simulated data. We conclude that it is feasible to use GBS to describe relationships between family-pools and to estimate genomic heritability directly at the level of F2 family-pool samples, but estimates are biased at low sequencing depth.


Assuntos
Pool Gênico , Genoma de Planta , Genômica/métodos , Lolium/genética , Resistência à Doença/genética , Frequência do Gene , Biblioteca Gênica , Técnicas de Genotipagem/métodos , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA/métodos
8.
BMC Genet ; 16: 79, 2015 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-26159428

RESUMO

BACKGROUND: Previous reports suggested a role for iron and hepcidin in atherosclerosis. Here, we evaluated the causality of these associations from a genetic perspective via (i) a Mendelian randomization (MR) approach, (ii) study of association of atherosclerosis-related single nucleotide polymorphisms (SNPs) with iron and hepcidin, and (iii) estimation of genomic correlations between hepcidin, iron and atherosclerosis. RESULTS: Analyses were performed in a general population sample. Iron parameters (serum iron, serum ferritin, total iron-binding capacity and transferrin saturation), serum hepcidin and genome-wide SNP data were available for N = 1,819; non-invasive measurements of atherosclerosis (NIMA), i.e., presence of plaque, intima media thickness and ankle-brachial index (ABI), for N = 549. For the MR, we used 12 iron-related SNPs that were previously identified in a genome-wide association meta-analysis on iron status, and assessed associations of individual SNPs and quartiles of a multi-SNP score with NIMA. Quartile 4 versus quartile 1 of the multi-SNP score showed directionally consistent associations with the hypothesized direction of effect for all NIMA in women, indicating that increased body iron status is a risk factor for atherosclerosis in women. We observed no single SNP associations that fit the hypothesized directions of effect between iron and NIMA, except for rs651007, associated with decreased ferritin concentration and decreased atherosclerosis risk. Two of six NIMA-related SNPs showed association with the ratio hepcidin/ferritin, suggesting that an increased hepcidin/ferritin ratio increases atherosclerosis risk. Genomic correlations were close to zero, except for hepcidin and ferritin with ABI at rest [-0.27 (SE 0.34) and -0.22 (SE 0.35), respectively] and ABI after exercise [-0.29 (SE 0.34) and -0.30 (0.35), respectively]. The negative sign indicates an increased atherosclerosis risk with increased hepcidin and ferritin concentrations. CONCLUSIONS: Our results suggest a potential causal role for hepcidin and ferritin in atherosclerosis, and may indicate that iron status is causally related to atherosclerosis in women.


Assuntos
Aterosclerose/sangue , Aterosclerose/etiologia , Hepcidinas/sangue , Ferro/sangue , Adulto , Idoso , Aterosclerose/patologia , Feminino , Ferritinas/sangue , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica , Polimorfismo de Nucleotídeo Único , Fatores de Risco
9.
BMC Genomics ; 15: 1112, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25511820

RESUMO

BACKGROUND: The milk fat profile of the Danish Holstein (DH) and Danish Jersey (DJ) show clear differences. Identification of the genomic regions, genes and biological pathways underlying the milk fat biosynthesis will improve the understanding of the biology underlying bovine milk fat production and may provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP data was performed. RESULTS: The GWAS identified in total 1,233 SNPs (FDR < 0.10) spread over 18 chromosomes for nine different FA traits for the DH breed and 1,122 SNPs (FDR < 0.10) spread over 26 chromosomes for 13 different FA traits were detected for the DJ breed. Of these significant SNPs, 108 SNP markers were significant in both DH and DJ (C14-index, BTA26; C16, BTA14; fat percentage (FP), BTA14). This was supported by an enrichment test. The QTL on BTA14 and BTA26 represented the known candidate genes DGAT and SCD. In addition we suggest ACSS3 to be a good candidate gene for the QTL on BTA5 for C10:0 and C15:0. In addition, genetic correlations between the FA traits within breed showed large similarity across breeds. Furthermore, the biological pathway analysis revealed that fat digestion and absorption (KEGG04975) plays a role for the traits FP, C14:1, C16 index and C16:1. CONCLUSION: There was a clear similarity between the underlying genetics of FA in the milk between DH and DJ. This was supported by the fact that there was substantial overlap between SNPs for FP, C14 index, C14:1, C16 index and C16:1. In addition genetic correlations between FA showed a similar pattern across DH and DJ. Furthermore the biological pathway analysis suggested that fat digestion and absorption KEGG04975 is important for the traits FP, C14:1, C16 index and C16:1.


Assuntos
Ácidos Graxos/metabolismo , Estudo de Associação Genômica Ampla , Leite/metabolismo , Animais , Bovinos , Diacilglicerol O-Aciltransferase/genética , Feminino , Genoma , Genótipo , Lactação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estearoil-CoA Dessaturase/genética
10.
PLoS One ; 9(4): e95923, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24763738

RESUMO

Joint association analysis of multiple traits in a genome-wide association study (GWAS), i.e. a multivariate GWAS, offers several advantages over analyzing each trait in a separate GWAS. In this study we directly compared a number of multivariate GWAS methods using simulated data. We focused on six methods that are implemented in the software packages PLINK, SNPTEST, MultiPhen, BIMBAM, PCHAT and TATES, and also compared them to standard univariate GWAS, analysis of the first principal component of the traits, and meta-analysis of univariate results. We simulated data (N = 1000) for three quantitative traits and one bi-allelic quantitative trait locus (QTL), and varied the number of traits associated with the QTL (explained variance 0.1%), minor allele frequency of the QTL, residual correlation between the traits, and the sign of the correlation induced by the QTL relative to the residual correlation. We compared the power of the methods using empirically fixed significance thresholds (α = 0.05). Our results showed that the multivariate methods implemented in PLINK, SNPTEST, MultiPhen and BIMBAM performed best for the majority of the tested scenarios, with a notable increase in power for scenarios with an opposite sign of genetic and residual correlation. All multivariate analyses resulted in a higher power than univariate analyses, even when only one of the traits was associated with the QTL. Hence, use of multivariate GWAS methods can be recommended, even when genetic correlations between traits are weak.


Assuntos
Estudo de Associação Genômica Ampla , Biologia Computacional , Humanos , Análise Multivariada , Locos de Características Quantitativas
11.
Theor Appl Genet ; 127(6): 1331-41, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668443

RESUMO

KEY MESSAGE: We propose a method in which GBS data can be conveniently analyzed without calling genotypes. F2 families are frequently used in breeding of outcrossing species, for instance to obtain trait measurements on plots. We propose to perform association studies by obtaining a matching "family genotype" from sequencing a pooled sample of the family, and to directly use allele frequencies computed from sequence read-counts for mapping. We show that, under additivity assumptions, there is a linear relationship between the family phenotype and family allele frequency, and that a regression of family phenotype on family allele frequency will estimate twice the allele substitution effect at a locus. However, medium-to-low sequencing depth causes underestimation of the true allele substitution effect. An expression for this underestimation is derived for the case that parents are diploid, such that F2 families have up to four dosages of every allele. Using simulation studies, estimation of the allele effect from F2-family pools was verified and it was shown that the underestimation of the allele effect is correctly described. The optimal design for an association study when sequencing budget would be fixed is obtained using large sample size and lower sequence depth, and using higher SNP density (resulting in higher LD with causative mutations) and lower sequencing depth. Therefore, association studies using genotyping by sequencing are optimal and use low sequencing depth per sample. The developed framework for association studies using allele frequencies from sequencing can be modified for other types of family pools and is also directly applicable for association studies in polyploids.


Assuntos
Produtos Agrícolas/genética , Cruzamentos Genéticos , Simulação por Computador , Frequência do Gene , Estudos de Associação Genética , Genótipo , Modelos Genéticos , Análise de Sequência de DNA
12.
Genet Sel Evol ; 46: 2, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24438068

RESUMO

BACKGROUND: Knowledge regarding causal relationships among traits is important to understand complex biological systems. Structural equation models (SEM) can be used to quantify the causal relations between traits, which allow prediction of outcomes to interventions applied to such a network. Such models are fitted conditionally on a causal structure among traits, represented by a directed acyclic graph and an Inductive Causation (IC) algorithm can be used to search for causal structures. The aim of this study was to explore the space of causal structures involving bovine milk fatty acids and to select a network supported by data as the structure of a SEM. RESULTS: The IC algorithm adapted to mixed models settings was applied to study 14 correlated bovine milk fatty acids, resulting in an undirected network. The undirected pathway from C4:0 to C12:0 resembled the de novo synthesis pathway of short and medium chain saturated fatty acids. By using prior knowledge, directions were assigned to that part of the network and the resulting structure was used to fit a SEM that led to structural coefficients ranging from 0.85 to 1.05. The deviance information criterion indicated that the SEM was more plausible than the multi-trait model. CONCLUSIONS: The IC algorithm output pointed towards causal relations between the studied traits. This changed the focus from marginal associations between traits to direct relationships, thus towards relationships that may result in changes when external interventions are applied. The causal structure can give more insight into underlying mechanisms and the SEM can predict conditional changes due to such interventions.


Assuntos
Algoritmos , Ácidos Graxos/análise , Leite/química , Animais , Bovinos , Ácidos Graxos/genética , Modelos Genéticos , Fenótipo
13.
BMC Genet ; 14: 79, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-24024882

RESUMO

BACKGROUND: For several years, in human nutrition there has been a focus on the proportion of unsaturated fatty acids (UFA) and saturated fatty acids (SFA) found in bovine milk. The positive health-related properties of UFA versus SFA have increased the demand for food products with a higher proportion of UFA. To be able to change the UFA and SFA content of the milk by breeding it is important to know whether there is a genetic component underlying the individual FA in the milk. We have estimated the heritability for individual FA in the milk of Danish Holstein. For this purpose we used information of SNP markers instead of the traditional pedigree relationships. RESULTS: Estimates of heritability were moderate within the range of 0.10 for C18:1 trans-11 to 0.34 for C8:0 and C10:0, whereas the estimates for saturated fatty acids and unsaturated fatty acids were 0.14 and 0.18, respectively. Posterior standard deviations were in the range from 0.07 to 0.17. The correlation estimates showed a general pattern of two groups, one group mainly consisting of saturated fatty acids and one group mainly consisting of unsaturated fatty acids. The phenotypic correlation ranged from -0.95 (saturated fatty acids and unsaturated fatty acids) to 0.99 (unsaturated fatty acids and monounsaturated fatty acids) and the genomic correlation for fatty acids ranged from -0.29 to 0.91. CONCLUSIONS: The heritability estimates obtained in this study are in general accordance with heritability estimates from studies using pedigree data and/or a genomic relationship matrix in the context of a REML approach. SFA and UFA expressed a strong negative phenotypic correlation and a weaker genetic correlation. This is in accordance with the theory that SFA is synthesized de novo, while UFA can be regulated independently from the regulation of SFA by the feeding regime.


Assuntos
Ácidos Graxos/genética , Genoma , Leite/química , Polimorfismo de Nucleotídeo Único , Animais , Teorema de Bayes , Bovinos , Dinamarca , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Marcadores Genéticos , Variação Genética , Genótipo , Fenótipo , Característica Quantitativa Herdável
14.
BMC Genet ; 13: 42, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22651804

RESUMO

BACKGROUND: Genomic selection uses dense single nucleotide polymorphisms (SNP) markers to predict breeding values, as compared to conventional evaluations which estimate polygenic effects based on phenotypic records and pedigree information. The objective of this study was to compare polygenic, genomic and combined polygenic-genomic models, including mixture models (labelled according to the percentage of genotyped SNP markers considered to have a substantial effect, ranging from 2.5% to 100%). The data consisted of phenotypes and SNP genotypes (10,946 SNPs) of 2,188 mice. Various growth, behavioural and physiological traits were selected for the analysis to reflect a wide range of heritabilities (0.10 to 0.74) and numbers of detected quantitative traits loci (QTL) (1 to 20) affecting those traits. The analysis included estimation of variance components and cross-validation within and between families. RESULTS: Genomic selection showed a high predictive ability (PA) in comparison to traditional polygenic selection, especially for traits of moderate heritability and when cross-validation was between families. This occurred although the proportion of genomic variance of traits using genomic models was 22 to 33% smaller than using polygenic models. Using a 2.5% mixture genomic model, the proportion of genomic variance was 79% smaller relative to the polygenic model. Although the proportion of variance explained by the markers was reduced further when a smaller number of SNPs was assumed to have a substantial effect on the trait, PA of genomic selection for most traits was little affected. These low mixture percentages resulted in improved estimates of single SNP effects. Genomic models implemented for traits with fewer QTLs showed even lower PA than the polygenic models. CONCLUSIONS: Genomic selection generally performed better than traditional polygenic selection, especially in the context of between family cross-validation. Reducing the number of markers considered to affect the trait did not significantly change PA for most traits, particularly in the case of within family cross-validation, but increased the number of markers found to be associated with QTLs. The underlying number of QTLs affecting the trait has an effect on PA, with a smaller number of QTLs resulting in lower PA using the genomic model compared to the polygenic model.


Assuntos
Teorema de Bayes , Modelos Genéticos , Locos de Características Quantitativas , Seleção Genética , Animais , Biomarcadores , Genoma , Masculino , Camundongos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único
15.
BMC Proc ; 4 Suppl 1: S12, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20380755

RESUMO

BACKGROUND: Identification of QTL affecting a phenotype which is measured multiple times on the same experimental unit is not a trivial task because the repeated measures are not independent and in most cases show a trend in time. A complicating factor is that in most cases the mean increases non-linear with time as well as the variance. A two- step approach was used to analyze a simulated data set containing 1000 individuals with 5 measurements each. First the measurements were summarized in latent variables and subsequently a genome wide analysis was performed of these latent variables to identify segregating QTL using a Bayesian algorithm. RESULTS: For each individual a logistic growth curve was fitted and three latent variables: asymptote (ASYM), inflection point (XMID) and scaling factor (SCAL) were estimated per individual. Applying an 'animal' model showed heritabilities of approximately 48% for ASYM and SCAL while the heritability for XMID was approximately 24%. The genome wide scan revealed four QTLs affecting ASYM, one QTL affecting XMID and four QTLs affecting SCAL. The size of the QTL differed. QTL with a larger effect could be more precisely located compared to QTL with small effect. The locations of the QTLs for separate parameters were very close in some cases and probably caused the genetic correlation observed between ASYM and XMID and SCAL respectively. None of the QTL appeared on chromosome five. CONCLUSIONS: Repeated observations on individuals were affected by at least nine QTLs. For most QTL a precise location could be determined. The QTL for the inflection point (XMID) was difficult to pinpoint and might actually exist of two closely linked QTL on chromosome one.

16.
Circulation ; 121(11): 1313-21, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20212279

RESUMO

BACKGROUND: Mutations of the transcription factor Nkx2-5 cause pleiotropic heart defects with incomplete penetrance. This variability suggests that additional factors can affect or prevent the mutant phenotype. We assess here the role of genetic modifiers and their interactions. METHODS AND RESULTS: Heterozygous Nkx2-5 knockout mice in the inbred strain background C57Bl/6 frequently have atrial and ventricular septal defects. The incidences are substantially reduced in the Nkx2-5(+/-) progeny of first-generation (F1) outcrosses to the strains FVB/N or A/J. Defects recur in the second generation (F2) of the F1 X F1 intercross or backcrosses to the parental strains. Analysis of >3000 Nkx2-5(+/-) hearts from 5 F2 crosses demonstrates the profound influence of genetic modifiers on disease presentation. On the basis of their incidences and coincidences, anatomically distinct malformations have shared and unique modifiers. All 3 strains carry susceptibility alleles at different loci for atrial and ventricular septal defects. Relative to the other 2 strains, A/J carries polymorphisms that confer greater susceptibility to atrial septal defect and atrioventricular septal defects and C57Bl/6 to muscular ventricular septal defects. Segregation analyses reveal that > or = 2 loci influence membranous ventricular septal defect susceptibility, whereas > or = loci and at least 1 epistatic interaction affect muscular ventricular and atrial septal defects. CONCLUSIONS: Alleles of modifier genes can either buffer perturbations on cardiac development or direct the manifestation of a defect. In a genetically heterogeneous population, the predominant effect of modifier genes is health. (Circulation. 2010;121:1313-1321.)


Assuntos
Predisposição Genética para Doença/genética , Cardiopatias Congênitas/genética , Coração/embriologia , Animais , Modelos Animais de Doenças , Feminino , Cardiopatias Congênitas/epidemiologia , Comunicação Interatrial/epidemiologia , Comunicação Interatrial/genética , Comunicação Interventricular/epidemiologia , Comunicação Interventricular/genética , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Incidência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Knockout , Mutação/genética , Fenótipo , Fatores de Risco , Fatores de Transcrição/genética
17.
BMC Dev Biol ; 7: 66, 2007 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-17567520

RESUMO

BACKGROUND: Combining microarray results and biological pathway information will add insight into biological processes. Pathway information is widely available in databases through the internet. Mammalian muscle formation has been previously studied using microarray technology in pigs because these animals are an interesting animal model for muscle formation due to selection for increased muscle mass. Results indicated regulation of the expression of genes involved in proliferation and differentiation of myoblasts, and energy metabolism. The aim of the present study was to analyse microarrays studying myogenesis in pigs. It was necessary to develop methods to search biochemical pathways databases. RESULTS: PERL scripts were developed that used the names of the genes on the microarray to search databases. Synonyms of gene names were added to the list by searching the Gene Ontology database. The KEGG database was searched for pathway information using this updated gene list. The KEGG database returned 88 pathways. Most genes were found in a single pathway, but others were found in up to seven pathways. Combining the pathways and the microarray information 21 pathways showed sufficient information content for further analysis. These pathways were related to regulation of several steps in myogenesis and energy metabolism. Pathways regulating myoblast proliferation and muscle fibre formation were described. Furthermore, two networks of pathways describing the formation of the myoblast cytoskeleton and regulation of the energy metabolism during myogenesis were presented. CONCLUSION: Combining microarray results and pathways information available through the internet provide biological insight in how the process of porcine myogenesis is regulated.


Assuntos
Redes e Vias Metabólicas/fisiologia , Desenvolvimento Muscular/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Cálcio/metabolismo , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Gravidez , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Suínos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
18.
Physiol Genomics ; 29(1): 57-65, 2007 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-17132818

RESUMO

This study presents a systems genetic analysis on the physiology of cortisol in mice and pigs with an aim to show the potential of a comprehensive computational approach to quickly identify candidate genes and avoid a costly whole-genome quantitative trait locus (QTL) mapping. Population genetics analyses were performed on measurements of cortisol from a pig selection experiment. Expression QTL were mapped and gene networks were built using gene expressions for Crhr1 (corticotrophin-releasing hormone receptor) gene and single nucleotide polymorphisms from public mouse data. Results from mouse data were used to infer potential candidate regulatory genes involved in pig cortisol regulation, using a comparative or translational systems genetics approach. The pig data used were from a 10-yr divergent genetic selection experiment, providing data on 417 individuals. Population genetics analysis showed that cortisol is highly genetically determined with heritabilities of 0.40-0.70. Furthermore, a major gene with an additive effect of 86 ng/ml is segregating. Genetical-genomics investigations revealed two trans-acting eQTL for Crhr1 gene expression on chromosomes 2 and 13. Candidate gene search under trans-eQTL peaks yielded 63 genes for Crhr1 expression phenotypes. Functional links for Crhr1 genes with other genes/proteins in the gene network using mouse data were shown for the first 10 statistically significant genes involved. Results show translational or comparative systems genetics approaches reduce costs and time in large-scale genetics and "-omics" investigations. This is the first study to report a strong genetic basis for cortisol physiology using a systems approach.


Assuntos
Regulação da Expressão Gênica/genética , Genética Populacional , Hidrocortisona/metabolismo , Locos de Características Quantitativas , Seleção Genética , Estresse Fisiológico/genética , Sus scrofa/genética , Animais , Hidrocortisona/genética , Hidrocortisona/urina , Camundongos , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Receptores de Hormônio Liberador da Corticotropina/metabolismo
19.
J Appl Genet ; 47(4): 337-43, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17132898

RESUMO

The main aim of this study was to determine if there exist any major gene for milk yield (MY), milking speed (MS), dry matter intake (DMI), and body weight (BW) recorded at various stages of lactation in first-lactation dairy cows (2543 observations from 320 cows) kept at the research farm of the Swiss Federal Institute of Technology between April 1994 and April 2004. Data were modelled based a simple repeatability covariance structure and analysed by using Bayesian segregation analyses. Gibbs sampling was used to make statistical inferences on posterior distributions; inferences were based on a single run of the Markov chain for each trait with 500,000 samples, with each 10th sample collected because of the high correlation among the samples. The posterior mean (+/-SD) of major gene variance was 2.61 (+/-2.46) for MY, 0.83 (+/-1.26) for MS, 4.37 (+/-2.34) for DMI, and 2056.43 (+/-665.67) for BW. Highest posterior density regions for 3 of the 4 traits did not include 0 (except MS), which supported the evidence for major gene. With additional tests for agreement with Mendelian transmission probabilities, we could only confirm the existence of a major gene for MY, but not for MS, DMI, and BW. Expected Mendelian transmission probabilities and their model fits were also compared.


Assuntos
Indústria de Laticínios , Lactação/genética , Leite , Animais , Teorema de Bayes , Peso Corporal/genética , Peso Corporal/fisiologia , Bovinos , Ingestão de Alimentos , Metabolismo Energético , Feminino , Variação Genética , Característica Quantitativa Herdável
20.
Genet Res ; 88(2): 119-31, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16978428

RESUMO

An interval quantitative trait locus (QTL) mapping method for complex polygenic diseases (as binary traits) showing QTL by environment interactions (QEI) was developed for outbred populations on a within-family basis. The main objectives, within the above context, were to investigate selection of genetic models and to compare liability or generalized interval mapping (GIM) and linear regression interval mapping (RIM) methods. Two different genetic models were used: one with main QTL and QEI effects (QEI model) and the other with only a main QTL effect (QTL model). Over 30 types of binary disease data as well as six types of continuous data were simulated and analysed by RIM and GIM. Using table values for significance testing, results show that RIM had an increased false detection rate (FDR) for testing interactions which was attributable to scale effects on the binary scale. GIM did not suffer from a high FDR for testing interactions. The use of empirical thresholds, which effectively means higher thresholds for RIM for testing interactions, could repair this increased FDR for RIM, but such empirical thresholds would have to be derived for each case because the amount of FDR depends on the incidence on the binary scale. RIM still suffered from higher biases (15-100% over- or under-estimation of true values) and high standard errors in QTL variance and location estimates than GIM for QEI models. Hence GIM is recommended for disease QTL mapping with QEI. In the presence of QEI, the model including QEI has more power (20-80% increase) to detect the QTL when the average QTL effect is small (in a situation where the model with a main QTL only is not too powerful). Top-down model selection is proposed in which a full test for QEI is conducted first and then the model is subsequently simplified. Methods and results will be applicable to human, plant and animal QTL mapping experiments.


Assuntos
Mapeamento Cromossômico , Meio Ambiente , Doenças Genéticas Inatas/genética , Modelos Genéticos , Locos de Características Quantitativas , Animais , Simulação por Computador , Variação Genética , Humanos , Funções Verossimilhança , Modelos Lineares , Herança Multifatorial , Fenótipo , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA