Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 4(3): e5030, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19333390

RESUMO

BACKGROUND: Creatine Kinases (CK) catalyze the reversible transfer of high-energy phosphate groups between ATP and phosphocreatine, thereby playing a storage and distribution role in cellular energetics. Brain-type CK (CK-B) deficiency is coupled to loss of function in neural cell circuits, altered bone-remodeling by osteoclasts and complement-mediated phagocytotic activity of macrophages, processes sharing dependency on actomyosin dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide evidence for direct coupling between CK-B and actomyosin activities in cortical microdomains of astrocytes and fibroblasts during spreading and migration. CK-B transiently accumulates in membrane ruffles and ablation of CK-B activity affects spreading and migration performance. Complementation experiments in CK-B-deficient fibroblasts, using new strategies to force protein relocalization from cytosol to cortical sites at membranes, confirmed the contribution of compartmentalized CK-B to cell morphogenetic dynamics. CONCLUSION/SIGNIFICANCE: Our results provide evidence that local cytoskeletal dynamics during cell motility is coupled to on-site availability of ATP generated by CK-B.


Assuntos
Actomiosina/metabolismo , Trifosfato de Adenosina/biossíntese , Movimento Celular , Creatina Quinase Forma BB/metabolismo , Metabolismo Energético , Animais , Astrócitos/ultraestrutura , Creatina Quinase Forma BB/fisiologia , Citoesqueleto/metabolismo , Fibroblastos/ultraestrutura , Microdomínios da Membrana/metabolismo , Camundongos
2.
J Biol Chem ; 284(3): 1620-7, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19008233

RESUMO

ATP is the "principal energy currency" in metabolism and the most versatile small molecular regulator of cellular activities. Although already much is known about the role of ATP in fundamental processes of living systems, data about its compartmentalization are rather scarce, and we still have only very limited understanding of whether patterns in the distribution of intracellular ATP concentration ("ATP inhomogeneity") do exist and have a regulatory role. Here we report on the analysis of coupling of local ATP supply to regulation of actomyosin behavior, a widespread and dynamic process with conspicuous high ATP dependence, which is central to cell shape changes and cell motility. As an experimental model, we use embryonic fibroblasts from knock-out mice without major ATP-ADP exchange enzymes, in which we (re)introduce the ATP/ADP exchange enzyme adenylate kinase-1 (AK1) and deliberately manipulate its spatial positioning by coupling to different artificial location tags. By transfection-complementation of AK1 variants and comparison with yellow fluorescent protein controls, we found that motility and spreading were enhanced in cells with AK1 with a focal contact guidance tag. Intermediary enhancement was observed in cells with membrane-targeted or cytosolic AK1. Use of a heterodimer-inducing approach for transient translocation of AK1 to focal contacts under conditions of constant global AK1 activity in the cell corroborated these results. Based on our findings with these model systems, we propose that local ATP supply in the cell periphery and "on site" fuelling of the actomyosin machinery, when maintained via enzymes involved in phosphoryl transfer, are codetermining factors in the control of cell motility.


Assuntos
Actomiosina/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Movimento Celular/fisiologia , Embrião de Mamíferos/enzimologia , Fibroblastos/enzimologia , Isoenzimas/metabolismo , Actomiosina/genética , Difosfato de Adenosina/genética , Trifosfato de Adenosina/genética , Adenilato Quinase/genética , Animais , Linhagem Celular , Membrana Celular/enzimologia , Membrana Celular/genética , Forma Celular/fisiologia , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Adesões Focais/enzimologia , Adesões Focais/genética , Humanos , Isoenzimas/genética , Camundongos , Camundongos Knockout , Modelos Biológicos , Transporte Proteico/fisiologia
4.
J Appl Physiol (1985) ; 100(2): 406-13, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16195390

RESUMO

The activity of AMP-activated protein kinase (AMPK) increases during muscle contractions as a result of elevated AMP concentration. We tested whether activation of AMPK would be altered during contractions in adenylate kinase (AK) 1-deficient (AK1-/-) mice, because they have a reduced capacity to form AMP. The right gastrocnemius-soleus-plantaris muscle group was stimulated via the sciatic nerve at 2 Hz for 30 min in both wild-type (WT) and AK1-/- animals. Initial force production was not different between the two groups (129.2 +/- 3.3 g vs. 140.9 +/- 8.5 g for WT and AK1-/-, respectively); however, force production by AK1-/- mice was significantly greater over the 30-min stimulation period, and final tension was 85 +/- 4.5% of initial in WT and 102 +/- 3.2% of initial in AK1-/- mice. Western blot analysis showed that AMPK phosphorylation with contractions was clearly increased in WT muscles (4.0 +/- 1.1 above resting values), but did not change noticeably with AK deficiency (1.6 +/- 0.4 above WT resting values). However, increases in phosphorylation of acetyl CoA carboxylase were robust in both WT and AK1-/- muscles and not different between the two groups. These results suggest that reduced formation of AMP during contractions in skeletal muscle of AK1-/- mice results in reduced phosphorylation of AMPK. However, altered AMPK signaling was not apparent in the phosphorylation status of acetyl CoA carboxylase, a typical marker of AMPK activity.


Assuntos
Adenilato Quinase/metabolismo , Isoenzimas/metabolismo , Complexos Multienzimáticos/metabolismo , Músculo Esquelético/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Acetil-CoA Carboxilase/metabolismo , Monofosfato de Adenosina/metabolismo , Adenilato Quinase/genética , Animais , Estimulação Elétrica , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular/fisiologia , Músculo Esquelético/inervação , Fosforilação , Nervo Isquiático , Fatores de Tempo
5.
Am J Physiol Cell Physiol ; 288(6): C1287-97, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15659712

RESUMO

The production of AMP by adenylate kinase (AK) and subsequent deamination by AMP deaminase limits ADP accumulation during conditions of high-energy demand in skeletal muscle. The goal of this study was to investigate the consequences of AK deficiency (-/-) on adenine nucleotide management and whole muscle function at high-energy demands. To do this, we examined isometric tetanic contractile performance of the gastrocnemius-plantaris-soleus (GPS) muscle group in situ in AK1(-/-) mice and wild-type (WT) controls over a range of contraction frequencies (30-120 tetani/min). We found that AK1(-/-) muscle exhibited a diminished inosine 5'-monophosphate formation rate (14% of WT) and an inordinate accumulation of ADP ( approximately 1.5 mM) at the highest energy demands, compared with WT controls. AK-deficient muscle exhibited similar initial contractile performance (521 +/- 9 and 521 +/- 10 g tension in WT and AK1(-/-) muscle, respectively), followed by a significant slowing of relaxation kinetics at the highest energy demands relative to WT controls. This is consistent with a depressed capacity to sequester calcium in the presence of high ADP. However, the overall pattern of fatigue in AK1(-/-) mice was similar to WT control muscle. Our findings directly demonstrate the importance of AMP formation and subsequent deamination in limiting ADP accumulation. Whole muscle contractile performance was, however, remarkably tolerant of ADP accumulation markedly in excess of what normally occurs in skeletal muscle.


Assuntos
Difosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/genética , Animais , Camundongos , Camundongos Knockout , Relaxamento Muscular/fisiologia , Músculo Esquelético/metabolismo , Fenótipo , Tetania/fisiopatologia
6.
Mol Cell Biochem ; 256-257(1-2): 59-72, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14977170

RESUMO

Adenylate kinases (AK, EC 2.7.4.3) have been considered important enzymes for energy homeostasis and metabolic signaling. To gain a better understanding of their cell-specific significance we studied the structural and functional aspects of products of one adenylate kinase gene, AK1, in mouse tissues. By combined computer database comparison and Northern analysis of mRNAs, we identified transcripts of 0.7 and 2.0 kilobases with different 5' and 3' non-coding regions which result from alternative use of promoters and polyadenylation sites. These mRNAs specify two distinct proteins, AK1 and a membrane-bound AK1 isoform (AK1beta), which differ in their N-terminal end and are co-expressed in several tissues with high-energy demand, including the brain. Immunohistochemical analysis of brain tissue and primary neurons and astrocytes in culture demonstrated that AK1 isoforms are expressed predominantly in neurons. AK1beta, when tested in transfected COS-1 and N2a neuroblastoma cells, located at the cellular membrane and was able to catalyze phosphorylation of ADP in vitro. In addition, AK1beta mediated AMP-induced activation of recombinant ATP-sensitive potassium channels in the presence of ATP. Thus, two structurally distinct AK1 isoforms co-exist in the mouse brain within distinct cellular locations. These enzymes may function in promoting energy homeostasis in the compartmentalized cytosol and in translating cellular energetic signals to membrane metabolic sensors.


Assuntos
Adenilato Quinase/metabolismo , Encéfalo/enzimologia , Isoenzimas/metabolismo , Adenilato Quinase/genética , Animais , Sequência de Bases , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Primers do DNA , Metabolismo Energético , Homeostase , Isoenzimas/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
J Biol Chem ; 278(33): 30441-9, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12730234

RESUMO

Previously we demonstrated that efficient coupling between cellular sites of ATP production and ATP utilization, required for optimal muscle performance, is mainly mediated by the combined activities of creatine kinase (CK)- and adenylate kinase (AK)-catalyzed phosphotransfer reactions. Herein, we show that simultaneous disruption of the genes for the cytosolic M-CK- and AK1 isoenzymes compromises intracellular energetic communication and severely reduces the cellular capability to maintain total ATP turnover under muscle functional load. M-CK/AK1 (MAK=/=) mutant skeletal muscle displayed aberrant ATP/ADP, ADP/AMP and ATP/GTP ratios, reduced intracellular phosphotransfer communication, and increased ATP supply capacity as assessed by 18O labeling of [Pi] and [ATP]. An analysis of actomyosin complexes in vitro demonstrated that one of the consequences of M-CK and AK1 deficiency is hampered phosphoryl delivery to the actomyosin ATPase, resulting in a loss of contractile performance. These results suggest that MAK=/= muscles are energetically less efficient than wild-type muscles, but an apparent compensatory redistribution of high-energy phosphoryl flux through glycolytic and guanylate phosphotransfer pathways limited the overall energetic deficit. Thus, this study suggests a coordinated network of complementary enzymatic pathways that serve in the maintenance of energetic homeostasis and physiological efficiency.


Assuntos
Adenilato Quinase/genética , Creatina Quinase/genética , Metabolismo Energético/fisiologia , Isoenzimas/genética , Músculo Esquelético/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Animais , Comunicação Celular/fisiologia , Creatina Quinase/metabolismo , Glicólise/fisiologia , Guanosina Difosfato/metabolismo , Guanosina Monofosfato/metabolismo , Guanosina Trifosfato/metabolismo , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Descanso/fisiologia
8.
J Biol Chem ; 278(15): 12937-45, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12562761

RESUMO

Genetic ablation of adenylate kinase 1 (AK1), a member of the AK family of phosphotransfer enzymes, disturbs muscle energetic economy and decreases tolerance to metabolic stress, despite rearrangements in alternative high energy phosphoryl transfer pathways. To define the mechanisms of this adaptive response, soleus and gastrocnemius muscles from AK1(-/-) mice were characterized by cDNA array profiling, Western blot and ultrastructural analysis. We demonstrate that AK1 deficiency induces fiber-type specific variation in groups of transcripts involved in glycolysis and mitochondrial metabolism and in gene products defining structural and myogenic events. This was associated with increased phosphotransfer capacities of the glycolytic enzymes pyruvate kinase and 3-phosphoglycerate kinase. Moreover, in AK1(-/-) mice, fast-twitch gastrocnemius, but not slow-twitch soleus, had an increase in adenine nucleotide translocator (ANT) and mitochondrial creatine kinase protein, along with a doubling of the intermyofibrillar mitochondrial volume. These results provide molecular evidence for wide-scale remodeling in AK1-deficient muscles aimed at preservation of efficient energetic communication between ATP producing and utilizing cellular sites.


Assuntos
Adenilato Quinase/deficiência , Adenilato Quinase/genética , Metabolismo Energético , Isoenzimas/deficiência , Isoenzimas/genética , Músculo Esquelético/metabolismo , Adenilato Quinase/metabolismo , Animais , Éxons , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Homozigoto , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Músculo Esquelético/ultraestrutura , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio , RNA/genética , RNA/isolamento & purificação , RNA Mensageiro/genética , Transcrição Gênica
9.
Biochim Biophys Acta ; 1592(2): 117-21, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12379473

RESUMO

Thiamine triphosphate (ThTP) is found at low concentrations in most animal tissues and it may act as a phosphate donor for the phosphorylation of proteins, suggesting a potential role in cell signaling. Two mechanisms have been proposed for the enzymatic synthesis of ThTP. A thiamine diphosphate (ThDP) kinase (ThDP+ATP if ThTP+ADP) has been purified from brewer's yeast and shown to exist in rat liver. However, other data suggest that, at least in skeletal muscle, adenylate kinase 1 (AK1) is responsible for ThTP synthesis. In this study, we show that AK1 knockout mice have normal ThTP levels in skeletal muscle, heart, brain, liver and kidney, demonstrating that AK1 is not responsible for ThTP synthesis in those tissues. We predict that the high ThTP content of particular tissues like the Electrophorus electricus electric organ, or pig and chicken skeletal muscle is more tightly correlated with high ThDP kinase activity or low soluble ThTPase activity than with non-stringent substrate specificity and high activity of adenylate kinase.


Assuntos
Adenilato Quinase/deficiência , Isoenzimas/deficiência , Tiamina Trifosfato/metabolismo , Animais , Encéfalo/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Tiamina Trifosfato/análise , Tiamina Trifosfato/biossíntese
10.
Am J Physiol Heart Circ Physiol ; 283(2): H776-82, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12124227

RESUMO

Deletion of the major adenylate kinase AK1 isoform, which catalyzes adenine nucleotide exchange, disrupts cellular energetic economy and compromises metabolic signal transduction. However, the consequences of deleting the AK1 gene on cardiac energetic dynamics and performance in the setting of ischemia-reperfusion have not been determined. Here, at the onset of ischemia, AK1 knockout mice hearts displayed accelerated loss of contractile force compared with wild-type controls, indicating reduced tolerance to ischemic stress. On reperfusion, AK1 knockout hearts demonstrated reduced nucleotide salvage, resulting in lower ATP, GTP, ADP, and GDP levels and an altered metabolic steady state associated with diminished ATP-to-P(i) and creatine phosphate-to-P(i) ratios. Postischemic AK1 knockout hearts maintained approximately 40% of beta-phosphoryl turnover, suggesting increased phosphotransfer flux through remaining adenylate kinase isoforms. This was associated with sustained creatine kinase flux and elevated cellular glucose-6-phosphate levels as the cellular energetic system adapted to deletion of AK1. Such metabolic rearrangements, along with sustained ATP-to-ADP ratio and total ATP turnover rate, maintained postischemic contractile recovery of AK1 knockout hearts at wild-type levels. Thus deletion of the AK1 gene reveals that adenylate kinase phosphotransfer supports myocardial function on initiation of ischemic stress and safeguards intracellular nucleotide pools in postischemic recovery.


Assuntos
Adenilato Quinase/fisiologia , Isquemia Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Miocárdio/enzimologia , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/deficiência , Adenilato Quinase/genética , Animais , Metabolismo Energético , Coração/fisiopatologia , Camundongos , Camundongos Knockout/genética , Contração Miocárdica , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA